1887

Abstract

A Gram-negative bacterium, designated E130, was isolated from rhizospheric soil of Plantago winteri Wirtg. from a natural salt meadow as part of an investigation on rhizospheric bacteria from salt-resistant plant species and evaluation of their plant growth-promoting abilities. Cells were rods, non-motile, aerobic, and oxidase and catalase positive, grew in a temperature range of between 4 and 37 °C, and in the presence of 0.5–5 % NaCl (w/v). Based on 16S rRNA gene sequence analysis, strain E130 is affiliated within the genus Ancylobacter , sharing the highest similarity with Ancylobacter rudongensis DSM 17131 (97.6 %), Ancylobacter defluvii CCUG 63806 (97.5 %) and Ancylobacter dichloromethanicus DSM 21507 (97.4 %). The DNA G+C content of strain E130 was 65.1 mol%. Its respiratory quinones were Q-9 and Q-10 and its major polar lipids comprised phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and unidentified phospholipid. Major fatty acids of the strains E130 were C12 : 0, C16 : 0, C18 : 1 ω7c and C19 : 0cyclo ω8c. The DNA–DNA relatedness of E130 to A. rudongensis DSM 17131 , A. defluvii CCUG 63806 and A. dichloromethanicus DSM 21507 was 29.2, 21.2 and 32.2 % respectively. On the basis of our polyphasic taxonomic study the new isolate represents a novel species, for which the name Ancylobacter pratisalsi sp. nov. is proposed. The type strain is E130 (LMG 29367=DSM 102029).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002320
2017-09-25
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4500.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002320&mimeType=html&fmt=ahah

References

  1. Oren A. Alphaproteobacteria and betaproteobacteria. In Rosenberg M, Delong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes, 4th ed. Berlin, Heidelberg: Springer; 2014; pp. 709 [Crossref]
    [Google Scholar]
  2. Raj HD. Proposal of Ancylobacter gen. nov. as a substitute for the bacterial genus Microcyclus Orskov 1928. Int J Syst Bacteriol 1983; 33: 397– 398 [CrossRef]
    [Google Scholar]
  3. Xin YH, Zhou YG, Zhou HL, Chen WX. Ancylobacter rudongensis sp. nov., isolated from roots of Spartina anglica. Int J Syst Evol Microbiol 2004; 54: 385– 388 [CrossRef] [PubMed]
    [Google Scholar]
  4. Xin YH, Zhou YG, Chen WX. Ancylobacter polymorphus sp. nov. and Ancylobacter vacuolatus sp. nov. Int J Syst Evol Microbiol 2006; 56: 1185– 1188 [CrossRef] [PubMed]
    [Google Scholar]
  5. Lang E, Swiderski J, Stackebrandt E, Schumann P, Spröer C et al. Description of Ancylobacter oerskovii sp. nov. and two additional strains of Ancylobacter polymorphus. Int J Syst Evol Microbiol 2008; 58: 1997– 2002 [CrossRef] [PubMed]
    [Google Scholar]
  6. Firsova J, Doronina N, Lang E, Spröer C, Vuilleumier S et al. Ancylobacter dichloromethanicus sp. nov. – a new aerobic facultatively methylotrophic bacterium utilizing dichloromethane. Syst Appl Microbiol 2009; 32: 227– 232 [CrossRef] [PubMed]
    [Google Scholar]
  7. Poroshina MN, Doronina NV, Kaparullina EN, Kovalevskaya NP, Trotsenko YA. Halophilic and halotolerant aerobic methylobacteria from the technogenic Solikamsk biotopes. Microbiology 2013; 82: 490– 498 [CrossRef]
    [Google Scholar]
  8. Lu P, Jin L, Liang B, Zhang J, Li S et al. Study of biochemical pathway and enzyme involved in metsulfuron-methyl degradation by Ancylobacter sp. XJ-412-1 isolated from soil. Curr Microbiol 2011; 62: 1718– 1725 [CrossRef] [PubMed]
    [Google Scholar]
  9. Cavalca L, Zanchi R, Corsini A, Colombo M, Romagnoli C et al. Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Syst Appl Microbiol 2010; 33: 154– 164 [CrossRef] [PubMed]
    [Google Scholar]
  10. Van den Wijngaard AJ, Van der Kamp KW, Van der Ploeg J, Pries F, Kazemier B et al. Degradation of 1,2-dichloroethane by Ancylobacter aquaticus and other facultative methylotrophs. Appl Environ Microbiol 1992; 58: 976– 983 [PubMed]
    [Google Scholar]
  11. Strand SE, Dykes J, Chiang V. Aerobic microbial degradation of glucoisosaccharinic acid. Appl Environ Microbiol 1984; 47: 268– 271 [PubMed]
    [Google Scholar]
  12. Camboim EKA, Tadra-Sfeir MZ, de Souza EM, Pedrosa F de O, Andrade PP et al. Defluorination of sodium fluoroacetate by bacteria from soil and plants in Brazil. Sci World J 2012; 2012: 1– 5 [CrossRef]
    [Google Scholar]
  13. Banik A, Mukhopadhaya SK, Dangar TK. Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta 2016; 243: 799– 812 [CrossRef] [PubMed]
    [Google Scholar]
  14. Cardinale M, Ratering S, Suarez C, Zapata Montoya AM, Geissler-Plaum R et al. Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiol Res 2015; 181: 22– 32 [CrossRef] [PubMed]
    [Google Scholar]
  15. Turner GL, Gibson AH. Measurement of nitrogen fixation by indirect means. In Bergensen FJ. (editor) Methods for Evaluating Biological Nitrogen Fixation Chichester: Wiley; 1980; pp. 111– 139
    [Google Scholar]
  16. Gerhard P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  17. Heimbrook ME, Wang WLL, Campbell G. Flagella easily. J Clin Microbiol 1989; 27: 2612– 2615
    [Google Scholar]
  18. Pfennig N. Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 1978; 28: 283– 288 [CrossRef]
    [Google Scholar]
  19. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A. A rapid and easy method for the detection of microbial cellulases on agar plates using gram's iodine. Curr Microbiol 2008; 57: 503– 507 [CrossRef] [PubMed]
    [Google Scholar]
  20. Penrose DM, Glick BR. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 2003; 118: 10– 15 [CrossRef] [PubMed]
    [Google Scholar]
  21. Ribeiro CM, Cardoso EJ. Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia). Microbiol Res 2012; 167: 69– 78 [CrossRef] [PubMed]
    [Google Scholar]
  22. Unno Y, Okubo K, Wasaki J, Shinano T, Osaki M. Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ Microbiol 2005; 7: 396– 404 [CrossRef] [PubMed]
    [Google Scholar]
  23. Poly F, Monrozier LJ, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 2001; 152: 95– 103 [CrossRef] [PubMed]
    [Google Scholar]
  24. Suarez C, Ratering S, Kramer I, Schnell S. Cellvibrio diazotrophicus sp. nov., a nitrogen-fixing bacteria isolated from the rhizosphere of salt meadow plants and emended description of the genus Cellvibrio. Int J Syst Evol Microbiol 2014; 64: 481– 486 [CrossRef] [PubMed]
    [Google Scholar]
  25. Moré MI, Herrick JB, Silva MC, Ghiorse WC, Madsen EL. Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl Environ Microbiol 1994; 60: 1572– 1580 [PubMed]
    [Google Scholar]
  26. Gonzalez JM, Saiz-Jimenez C. A simple fluorimetric method for the estimation of DNA-DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 2005; 9: 75– 79 [CrossRef] [PubMed]
    [Google Scholar]
  27. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4: 184– 192 [CrossRef] [PubMed]
    [Google Scholar]
  28. Kampmann K, Ratering S, Kramer I, Schmidt M, Zerr W et al. Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates. Appl Environ Microbiol 2012; 78: 2106– 2119 [CrossRef] [PubMed]
    [Google Scholar]
  29. Schwieger F, Tebbe CC. A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 1998; 64: 4870– 4876 [PubMed]
    [Google Scholar]
  30. Arfman N, Dijkhuizen L, Kirchhof G, Ludwig W, Schleifer KH et al. Bacillus methanolicus sp. nov., a new species of thermotolerant, methanol-utilizing, endospore-forming bacteria. Int J Syst Bacteriol 1992; 42: 439– 445 [CrossRef] [PubMed]
    [Google Scholar]
  31. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403– 410 [CrossRef] [PubMed]
    [Google Scholar]
  32. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  33. Wright ES, Yilmaz LS, Noguera DR. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 2012; 78: 717– 725 [CrossRef] [PubMed]
    [Google Scholar]
  34. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28: 1823– 1829 [CrossRef] [PubMed]
    [Google Scholar]
  35. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31: 241– 250 [CrossRef] [PubMed]
    [Google Scholar]
  36. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32: 1363– 1371 [CrossRef] [PubMed]
    [Google Scholar]
  37. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978; 75: 4801– 4805 [CrossRef] [PubMed]
    [Google Scholar]
  38. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33: 152– 155
    [Google Scholar]
  39. Stackebrandt E, Goebel BM. Taxonomic note: a place for dna-dna reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
  40. Oren A, XW X. Alphaproteobacteria and Betaproteobacteria. In Rosenberg M, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes, 4th ed. Berlin Heidelberg: Springer; 2014; pp. 283
    [Google Scholar]
  41. Urakami T, Komagata K. Celluar fatty acid composition and coenzyme Q system in gram-negative methanol-utilizing bacteria. J Gen Appl Microbiol 1979; 25: 343– 360 [CrossRef]
    [Google Scholar]
  42. Larkin JM, Williams PM, Taylor R. Taxonomy of the Genus Microcyclus Orskov 1928: Reintroduction and Emendation of the Genus Spirosoma Migula 1894 and Proposal of a New Genus, Flectobacillus. Int J Syst Bacteriol 1977; 27: 147– 156 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002320
Loading
/content/journal/ijsem/10.1099/ijsem.0.002320
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error