1887

Abstract

A yellow-coloured, Gram-stain-negative, non-motile, rod-shaped, strictly aerobic bacterium, designated 1-116, was isolated from Erdos grassland soil of Inner Mongolia, PR China. Phylogenetic analysis based on 16S rRNA genes showed that strain 1-116 was a member of family and exhibited the highest similarities to THG-DT86 (90.1 %) and 3-3 (90.0 %), while the similarities to the other type strains were lower than 90.0 %. Strain 1-116 grew at 16–33 °C (optimum 28 °C), pH 6.0–9.0 (optimum 7.0–8.0) and 0–0.5 % NaCl (w/v; optimum without NaCl). A flexirubin-type pigment was present. The DNA G+C content was 43.2 mol% and the only quinone present was menaquinone-7. The only polyamine detected was -homospermidine [30.7 µmol (g dry weight)] and the predominant fatty acids were iso-C (20.8 %), iso-C G (25.1 %), summed feature 4 (anteiso-C B and/or iso-C I; 13.8 %) and iso-C 3-OH (13.2 %). The major polar lipids were phosphatidylethanolamine, three unidentified lipids, an unidentified aminophospholipid and an unidentified glycolipid. On the basis of the polyphasic analyses, strain 1-116 represents a novel genus and species in the family , for which the name gen. nov., sp. nov., is proposed. The type strain of is 1-116 (=CCTCC AB 2017054=KCTC 52843).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002316
2017-11-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4475.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002316&mimeType=html&fmt=ahah

References

  1. Kämpfer P, Lodders N, Falsen E. Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov. Int J Syst Evol Microbiol 2011;61:518–523 [CrossRef][PubMed]
    [Google Scholar]
  2. Sangkhobol V, Skerman VBD. Chitinophaga, a new genus of chitinolytic myxobacteria. Int J Syst Evol Microbiol 1981;31:285–293 [CrossRef]
    [Google Scholar]
  3. Wang Y, Cai F, Tang Y, Dai J, Qi H et al. Flavitalea populi gen. nov., sp. nov., isolated from soil of a Euphrates poplar (Populus euphratica) forest. Int J Syst Evol Microbiol 2011;61:1554–1560 [CrossRef][PubMed]
    [Google Scholar]
  4. Leandro T, França L, Nobre MF, Rainey FA, da Costa MS. Heliimonas saccharivorans gen. nov., sp. nov., a member of the family Chitinophagaceae isolated from a mineral water aquifer, and emended description of Filimonas lacunae. Int J Syst Evol Microbiol 2013;63:3793–3799 [CrossRef][PubMed]
    [Google Scholar]
  5. Kim SJ, Park JH, Lim JM, Ahn JH, Anandham R et al. Parafilimonas terrae gen. nov., sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 2014;64:3040–3045 [CrossRef][PubMed]
    [Google Scholar]
  6. Anders H, Dunfield PF, Lagutin K, Houghton KM, Power JF et al. Thermoflavifilum aggregans gen. nov., sp. nov., a thermophilic and slightly halophilic filamentous bacterium from the phylum Bacteroidetes. Int J Syst Evol Microbiol 2014;64:1264–1270 [CrossRef][PubMed]
    [Google Scholar]
  7. Fan H, Su C, Wang Y, Yao J, Zhao K et al. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 2008;105:529–539 [CrossRef][PubMed]
    [Google Scholar]
  8. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977;74:5463–5467 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  10. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  13. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  14. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  16. Son HM, Kook M, Kim JH, Yi TH. Taibaiella koreensis sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2014;64:1018–1023 [CrossRef][PubMed]
    [Google Scholar]
  17. Lee HJ, Jeong SE, Cho MS, Kim S, Lee SS et al. Flavihumibacter solisilvae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2014;64:2897–2901 [CrossRef][PubMed]
    [Google Scholar]
  18. Zhang L, Wang Y, Wei L, Wang Y, Shen X et al. Taibaiella smilacinae gen. nov., sp. nov., an endophytic member of the family Chitinophagaceae isolated from the stem of Smilacina japonica, and emended description of Flavihumibacter petaseus. Int J Syst Evol Microbiol 2013;63:3769–3776 [CrossRef][PubMed]
    [Google Scholar]
  19. Zhang NN, Jh Q, Yuan HL, Sun YM, Yang JS et al. Flavihumibacter petaseus gen.nov., sp. nov., isolated from soil of a subtropical rainforest. Int J Syst Evol Microbiol 2010;60:1609–1612[Crossref]
    [Google Scholar]
  20. Mccammon SA, Bowman JP. Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov., and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 2000;50:1055–1063 [CrossRef][PubMed]
    [Google Scholar]
  21. Tarrand JJ, Gröschel DH, Rapid GDH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982;16:772–774[PubMed]
    [Google Scholar]
  22. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  23. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  24. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955;1:138–146[Crossref]
    [Google Scholar]
  25. Luo G, Shi Z, Wang G. Lysobacter arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. Int J Syst Evol Microbiol 2012;62:1659–1665 [CrossRef][PubMed]
    [Google Scholar]
  26. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  27. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003;49:345–349 [CrossRef][PubMed]
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  29. Busse HJ, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
    [Google Scholar]
  30. Taibi G, Schiavo MR, Gueli MC, Rindina PC, Muratore R et al. Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J Chromatogr B Biomed Sci Appl 2000;745:431–437 [CrossRef][PubMed]
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  32. Chung EJ, Park TS, Jeon CO, Chung YR. Chitinophaga oryziterrae sp. nov., isolated from the rhizosphere soil of rice (Oryza sativa L.). Int J Syst Evol Microbiol 2012;62:3030–3035 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002316
Loading
/content/journal/ijsem/10.1099/ijsem.0.002316
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error