1887

Abstract

An extremely halophilic archaeal strain SP28 was isolated from the Gomso solar saltern, Republic of Korea. Cells of the new strain SP28 were pleomorphic and Gram stain negative, and produced red-pigmented colonies. These grew in medium with 2.5–4.5 M NaCl (optimum 3.1 M) and 0.05–0.5 M MgCl2 (optimum 0.1 M), at 25–50 °C (optimum 37 °C) and at a pH of 6.5–8.5 (optimum pH 8.0). Mg was required for growth. A concentration of at least 2 M NaCl was required to prevent cell lysis. Polar lipids included phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and one glycolipid chromatographically identical to sulfated mannosyl glucosyl diether. 16S rRNA and rpoB′ gene sequence analyses showed that strain SP28 is closely related to Haloplanus ruber R35 (97.3 and 94.1 %, 16S rRNA and rpoB′ gene sequence similarity, respectively), Haloplanus litoreus GX21 (97.0 and 92.1 %), Haloplanus salinus YGH66 (96.0 and 91.9 %), Haloplanus vescus RO5-8 (95.9 and 90.9 %), Haloplanus aerogenes TBN37 (95.6 and 90.3 %) and Haloplanus natans RE-101 (95.3 and 89.8 %). The DNA G+C content of the novel strain SP28 was 66.2 mol%, which is slightly higher than that of Hpn. litoreus GX21 (65.8 mol%) and Hpn. ruber R35 (66.0 mol%). DNA–DNA hybridization values betweenHpn. ruber R35 and strain SP28 and between Hpn. litoreus GX21 and strain SP28 were about 24.8 and 20.7 %, respectively. We conclude that strain SP28 represents a novel species of the genus Haloplanus and propose the name Haloplanus salinarum sp. nov. The type strain is SP28 (=JCM 31424=KCCM 43210).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002313
2017-09-25
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4456.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002313&mimeType=html&fmt=ahah

References

  1. Bardavid RE, Mana L, Oren A. Haloplanus natans gen. nov., sp. nov., an extremely halophilic, gas-vacuolate archaeon isolated from Dead Sea-Red Sea water mixtures in experimental outdoor ponds. Int J Syst Evol Microbiol 2007; 57: 780– 783 [CrossRef] [PubMed]
    [Google Scholar]
  2. Cui HL, Gao X, Li XY, Xu XW, Zhou YG et al. Haloplanus vescus sp. nov., an extremely halophilic archaeon from a marine solar saltern, and emended description of the genus Haloplanus. Int J Syst Evol Microbiol 2010; 60: 1824– 1827 [CrossRef] [PubMed]
    [Google Scholar]
  3. Cui HL, Gao X, Yang X, Xu XW. Haloplanus aerogenes sp. nov., an extremely halophilic archaeon from a marine solar saltern. Int J Syst Evol Microbiol 2011; 61: 965– 968 [CrossRef] [PubMed]
    [Google Scholar]
  4. Qiu XX, Zhao ML, Han D, Zhang WJ, Cui HL. Haloplanus salinus sp. nov., an extremely halophilic archaeon from a Chinese marine solar saltern. Arch Microbiol 2013; 195: 799– 803 [CrossRef] [PubMed]
    [Google Scholar]
  5. Han D, Cui HL. Haloplanus litoreus sp. nov. and Haloplanus ruber sp. nov., from a marine solar saltern and an aquaculture farm, respectively. Antonie van Leeuwenhoek 2014; 105: 679– 685 [CrossRef] [PubMed]
    [Google Scholar]
  6. Park SJ, Cha IT, Kim SJ, Shin KS, Hong Y et al. Salinisphaera orenii sp. nov., isolated from a solar saltern. Int J Syst Evol Microbiol 2012; 62: 1877– 1883 [CrossRef] [PubMed]
    [Google Scholar]
  7. Sehgal SN, Gibbons NE. Effect of some metal ions on the growth of Halobacterium cutirubrum. Can J Microbiol 1960; 6: 165– 169 [CrossRef] [PubMed]
    [Google Scholar]
  8. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  9. Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89: 5685– 5689 [CrossRef] [PubMed]
    [Google Scholar]
  10. Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R et al. Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B' (rpoB') gene. Int J Syst Evol Microbiol 2010; 60: 2398– 2408 [CrossRef] [PubMed]
    [Google Scholar]
  11. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  12. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  15. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  16. Gupta RS, Naushad S, Fabros R, Adeolu M. A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov. Antonie van Leeuwenhoek 2016; 109: 565– 587 [CrossRef] [PubMed]
    [Google Scholar]
  17. Oren A, Ventosa A, Grant WD. Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 1997; 47: 233– 238 [CrossRef]
    [Google Scholar]
  18. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4: 770– 773 [CrossRef] [PubMed]
    [Google Scholar]
  19. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  20. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 1988; 19: 161– 207 [Crossref]
    [Google Scholar]
  21. Xin H, Itoh T, Zhou P, Suzuki K, Kamekura M et al. Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 2000; 50: 1297– 1303 [CrossRef] [PubMed]
    [Google Scholar]
  22. Song HS, Cha IT, Rhee JK, Yim KJ, Kim AY et al. Halostella salina gen. nov., sp. nov., an extremely halophilic archaeon isolated from solar salt. Int J Syst Evol Microbiol 2016; 66: 2740– 2746 [CrossRef] [PubMed]
    [Google Scholar]
  23. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955; 70: 484– 485 [PubMed]
    [Google Scholar]
  24. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31: 575– 580 [PubMed]
    [Google Scholar]
  25. Koh HW, Song HS, Song U, Yim KJ, Roh SW et al. Halolamina sediminis sp. nov., an extremely halophilic archaeon isolated from solar salt. Int J Syst Evol Microbiol 2015; 65: 2479– 2484 [CrossRef] [PubMed]
    [Google Scholar]
  26. Benson HJ. Microbiological Applications: Laboratory Manual in General Microbiology Boston, MA: McGraw-Hill; 2002
    [Google Scholar]
  27. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24: 710– 715 [CrossRef] [PubMed]
    [Google Scholar]
  28. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  29. Cui HL, Lin ZY, Dong Y, Zhou PJ, Liu SJ et al. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 2007; 57: 2204– 2206 [Crossref]
    [Google Scholar]
  30. Gutiérrez MC, Castillo AM, Kamekura M, Ventosa A. Haloterrigena salinus sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 2008; 58: 2880– 2884 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002313
Loading
/content/journal/ijsem/10.1099/ijsem.0.002313
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error