1887

Abstract

A novel Gram-stain-positive, motile, endospore-forming, rod-shaped bacterial strain, NEAU-cbsb5, was isolated from forest soil from Changbai Mountain, Heilongjiang Province, China. The isolate grew at 15–40 °C (optimum 30 °C), at pH 6.0–8.0 (optimum pH 7.0) and in the presence of up to 4 % (w/v) NaCl, although NaCl was not required for growth. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain NEAU-cbsb5 formed a distinct lineage within the genus Bacillus and was most closely related to Bacillus acidiceler DSM 18954 (99.1 % similarity) and Bacillus luciferensis JCM 12212 (99.0 %). 16S rRNA gene sequence similarity to sequences of the type strains of other Bacillus species was less than 96.0 %. Average nucleotide identity (ANI) values between NEAU-cbsb5 and its most closely related species were 78.72–84.75 % by ANIm, ANIb and OrthoANIu analysis. The in silico DNA–DNA hybridization values between strain NEAU-cbsb5 and its close relatives B. acidiceler DSM 18954 and B. luciferensis JCM 12212 were both 23.80 %, again indicating they belong to different taxa. The major cellular fatty acids of NEAU-cbsb5 were iso-C15 : 0, anteiso-C15 : 0 and C16 : 0. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unknown aminophospholipid. The cell-wall peptidoglycan contained meso-diaminopimelic acid and the predominant menaquinones were MK-7 and MK-6. The genomic DNA G+C content was 33.0 mol%. Based on the phylogenetic, phenotypic and chemotaxonomic data, strain NEAU-cbsb5 was classified as a representative of a novel species in the genus Bacillus , for which the name Bacillus solisilvae sp. nov. is proposed. The type strain is NEAU-cbsb5 (=CGMCC 1.14993=DSM 100485).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002312
2017-09-18
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4449.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002312&mimeType=html&fmt=ahah

References

  1. Cohn F. Untersuchungen über Bakterien. Beitrage zur Biologie der Pflanzen 1872; 1: 127– 224
    [Google Scholar]
  2. Logan NA, De Vos P. Genus Bacillus Cohn 1872. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. New York: Springer; 2009; pp. 21– 128
    [Google Scholar]
  3. Logan NA, Halket G. Developments in the taxonomy of the aerobic, endospore-forming bacteria. In Logan NA, De Vos P. (editors) Aerobic, Endospore-forming Soil Bacteria, Berlin: Springer-Verlag; 2011; pp. 1– 29 [Crossref]
    [Google Scholar]
  4. Zhang S, Li Z, Yan Y, Zhang C, Li J et al. Bacillus urumqiensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2016; 66: 2305– 2312 [CrossRef] [PubMed]
    [Google Scholar]
  5. He HS, Hao ZQ, Mladenoff DJ, Shao GF, Ym H et al. Simulating forest ecosystem response to climate warming incorporating spatial effects in north-eastern China. J Biogeogr 2005; 32: 2043– 2056 [Crossref]
    [Google Scholar]
  6. Shen C, Xiong J, Zhang H, Feng Y, Lin X et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol Biochem 2013; 57: 204– 211 [CrossRef]
    [Google Scholar]
  7. Atlas RM. Handbook of Microbiological Media Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  8. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59: 2114– 2121 [CrossRef] [PubMed]
    [Google Scholar]
  9. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington: American Society for Microbiology; 1994; pp. 21– 41
    [Google Scholar]
  10. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Woalod WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  11. Leifson E. Atlas of Bacterial Flagellation London: Academic Press; 1960; [Crossref]
    [Google Scholar]
  12. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd ed. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  13. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic gram-negative rods. Microbiology 1982; 128: 1959– 1968 [CrossRef]
    [Google Scholar]
  14. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Aboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  15. Woese CR, Gutell R, Gupta R, Noller HF. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev 1983; 47: 621– 669 [PubMed]
    [Google Scholar]
  16. Springer N, Ludwig W, Amann R, Schmidt HJ, Görtz HD et al. Occurrence of fragmented 16S rRNA in an obligate bacterial endosymbiont of Paramecium caudatum. Proc Natl Acad Sci USA 1993; 90: 9892– 9895 [CrossRef] [PubMed]
    [Google Scholar]
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  21. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  22. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983; [Crossref]
    [Google Scholar]
  23. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10: 512– 526 [PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  25. Peak KK, Duncan KE, Veguilla W, Luna VA, King DS et al. Bacillus acidiceler sp. nov., isolated from a forensic specimen, containing Bacillus anthracis pX02 genes. Int J Syst Evol Microbiol 2007; 57: 2031– 2036 [CrossRef] [PubMed]
    [Google Scholar]
  26. Logan NA, Lebbe L, Verhelst A, Goris J, Forsyth G et al. Bacillus luciferensis sp. nov., from volcanic soil on Candlemas Island, South Sandwich archipelago. Int J Syst Evol Microbiol 2002; 52: 1985– 1989 [CrossRef] [PubMed]
    [Google Scholar]
  27. Bhandari V, Ahmod NZ, Shah HN, Gupta RS. Molecular signatures for Bacillus species: demarcation of the Bacillus subtilis and Bacillus cereus clades in molecular terms and proposal to limit the placement of new species into the genus Bacillus. Int J Syst Evol Microbiol 2013; 63: 2712– 2726 [CrossRef] [PubMed]
    [Google Scholar]
  28. Schmidt TR, Scott EJ, Dyer DW. Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group. BMC Genomics 2011; 12: 430 [CrossRef] [PubMed]
    [Google Scholar]
  29. Miller RA, Beno SM, Kent DJ, Carroll LM, Martin NH et al. Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments. Int J Syst Evol Microbiol 2016; 66: 4744– 4753 [CrossRef] [PubMed]
    [Google Scholar]
  30. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60: 249– 266 [CrossRef] [PubMed]
    [Google Scholar]
  31. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24: 713– 714 [CrossRef] [PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32: 929– 931 [CrossRef] [PubMed]
    [Google Scholar]
  34. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek doi:10.1007/s10482-017-0844-4 [Epub ahead of print] [CrossRef] [PubMed]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  36. Dunlap CA. Phylogenomic analysis shows that ‘Bacillus vanillea’ is a later heterotypic synonym of Bacillus siamensis. Int J Syst Evol Microbiol 2015; 65: 3507– 3510 [CrossRef] [PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64: 352– 356 [CrossRef] [PubMed]
    [Google Scholar]
  38. Dunlap CA, Kim S-J, Kwon S-W, Rooney AP. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int J Syst Evol Microbiol 2016; 66: 1212– 1217 [Crossref]
    [Google Scholar]
  39. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000; 30: 178– 182 [CrossRef] [PubMed]
    [Google Scholar]
  40. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  41. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp. 267– 284
    [Google Scholar]
  42. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16: 176– 178
    [Google Scholar]
  43. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61: 1165– 1169 [CrossRef] [PubMed]
    [Google Scholar]
  44. Mehrshad M, Amoozegar MA, Didari M, Bagheri M, Fazeli SA et al. Bacillus halosaccharovorans sp. nov., a moderately halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2013; 63: 2776– 2781 [CrossRef] [PubMed]
    [Google Scholar]
  45. Bagheri M, Didari M, Amoozegar MA, Schumann P, Sánchez-Porro C et al. Bacillus iranensis sp. nov., a moderate halophile from a hypersaline lake. Int J Syst Evol Microbiol 2012; 62: 811– 816 [CrossRef] [PubMed]
    [Google Scholar]
  46. Chen YG, Zhang YQ, He JW, Klenk HP, Xiao JQ et al. Bacillus hemicentroti sp. nov., a moderate halophile isolated from a sea urchin. Int J Syst Evol Microbiol 2011; 61: 2950– 2955 [CrossRef] [PubMed]
    [Google Scholar]
  47. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006; 56: 781– 786 [CrossRef] [PubMed]
    [Google Scholar]
  48. Kämpfer P. Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 1994; 17: 86– 98 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002312
Loading
/content/journal/ijsem/10.1099/ijsem.0.002312
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error