1887

Abstract

A novel Gram-negative bacterium strain, DRW22-8, was isolated from fresh water taken at a depth of 22 m at Daechung Reservoir, Republic of Korea. The cells of strain DRW22-8 were aerobic and motile with a single polar flagellum or non-motile (stalked), and formed creamy-white colonies on R2A agar. The phylogenetic analysis based on 16S rRNA gene sequencing indicated that the strain formed a separate lineage within the order Rhodobacterales , showing similarity values under 91.8 % with its closest phylogenetic neighbours, Hirschia litorea , Hirschia baltica and Hirschia maritima . The chemotaxonomic results showed Q-10 as the predominant respiratory ubiquinone, three unidentified glycolipids, an unidentified lipid and phosphatidylglycerol as the major polar lipids, and C16 : 0, 11-methyl C18 : 1, C18 : 1  ω7c and/or C18 : 1  ω6c as the major fatty acids. The DNA G+C content was 64.4 mol%. The combined genotypic and phenotypic data showed that strain DRW22-8 could be distinguished from all genera within the family Hyphomonadaceae and represented a novel genus, Asprobacter gen. nov., with the name Asprobacter aquaticus sp. nov., in the family Hyphomonadaceae . The type strain is DRW22-8 (=KCTC 42356=JCM 30469).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002311
2017-09-28
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4443.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002311&mimeType=html&fmt=ahah

References

  1. Henrici AT, Johnson DE. Studies of Freshwater Bacteria: II. Stalked bacteria, a new order of Schizomycetes. J Bacteriol 1935; 30: 61– 93 [PubMed]
    [Google Scholar]
  2. Abraham WR, Strömpl C, Vancanneyt M, Bennasar A, Swings J et al. Woodsholea maritima gen. nov., sp. nov., a marine bacterium with a low diversity of polar lipids. Int J Syst Evol Microbiol 2004; 54: 1227– 1234 [CrossRef] [PubMed]
    [Google Scholar]
  3. Lee K, Lee HK, Choi TH, Cho JC. Robiginitomaculum antarcticum gen. nov., sp. nov., a member of the family Hyphomonadaceae, from Antarctic seawater. Int J Syst Evol Microbiol 2007; 57: 2595– 2599 [CrossRef] [PubMed]
    [Google Scholar]
  4. Alain K, Tindall BJ, Intertaglia L, Catala P, Lebaron P. Hellea balneolensis gen. nov., sp. nov., a prosthecate alphaproteobacterium from the Mediterranean Sea. Int J Syst Evol Microbiol 2008; 58: 2511– 2519 [CrossRef] [PubMed]
    [Google Scholar]
  5. Lai Q, Yuan J, Wu C, Shao Z. Oceanibaculum indicum gen. nov., sp. nov., isolated from deep seawater of the Indian Ocean. Int J Syst Evol Microbiol 2009; 59: 1733– 1737 [CrossRef] [PubMed]
    [Google Scholar]
  6. Kang HS, Lee SD. Ponticaulis koreensis gen. nov., sp. nov., a new member of the family Hyphomonadaceae isolated from seawater. Int J Syst Evol Microbiol 2009; 59: 2951– 2955 [CrossRef] [PubMed]
    [Google Scholar]
  7. Zhang XY, Li GW, Wang CS, Zhang YJ, Xu XW et al. Marinicauda pacifica gen. nov., sp. nov., a prosthecate alphaproteobacterium of the family Hyphomonadaceae isolated from deep seawater. Int J Syst Evol Microbiol 2013; 63: 2248– 2253 [CrossRef] [PubMed]
    [Google Scholar]
  8. Fukui Y, Abe M, Kobayashi M, Saito H, Oikawa H et al. Algimonas porphyrae gen. nov., sp. nov., a member of the family Hyphomonadaceae, isolated from the red alga Porphyra yezoensis. Int J Syst Evol Microbiol 2013; 63: 314– 320 [CrossRef] [PubMed]
    [Google Scholar]
  9. Chen MH, Sheu SY, Chen CA, Wang JT, Chen WM. Oceanicaulis stylophorae sp. nov., isolated from the reef-building coral Stylophora pistillata. Int J Syst Evol Microbiol 2012; 62: 2241– 2246 [CrossRef] [PubMed]
    [Google Scholar]
  10. Schlesner H, Bartels C, Sittig M, Dorsch M, Stackebrandt E. Taxonomic and phylogenetic studies on a new taxon of budding, hyphal Proteobacteria, Hirschia baltica gen. nov., sp. nov. Int J Syst Bacteriol 1990; 40: 443– 451 [CrossRef] [PubMed]
    [Google Scholar]
  11. Weiner RM, Melick M, O'Neill K, Quintero E. Hyphomonas adhaerens sp. nov., Hyphomonas johnsonii sp. nov. and Hyphomonas rosenbergii sp. nov., marine budding and prosthecate bacteria. Int J Syst Evol Microbiol 2000; 50: 459– 469 [CrossRef] [PubMed]
    [Google Scholar]
  12. Abraham WR, Lünsdorf H, Vancanneyt M, Smit J. Cauliform bacteria lacking phospholipids from an abyssal hydrothermal vent: proposal of Glycocaulis abyssi gen. nov., sp. nov., belonging to the family Hyphomonadaceae. Int J Syst Evol Microbiol 2013; 63: 2207– 2215 [CrossRef] [PubMed]
    [Google Scholar]
  13. Jung JY, Kim JM, Jin HM, Kim SY, Park W et al. Litorimonas taeanensis gen. nov., sp. nov., isolated from a sandy beach. Int J Syst Evol Microbiol 2011; 61: 1534– 1538 [CrossRef] [PubMed]
    [Google Scholar]
  14. Weiner RM, Devine RA, Powell DM, Dagasan L, Moore RL. Hyphomonas oceanitis sp. nov., Hyphomonas hirschiana sp. nov., and Hyphomonas jannaschiana sp. nov. Int J Syst Bacteriol 1985; 35: 237– 243 [CrossRef]
    [Google Scholar]
  15. Strömpl C, Hold GL, Lünsdorf H, Graham J, Gallacher S et al. Oceanicaulis alexandrii gen. nov., sp. nov., a novel stalked bacterium isolated from a culture of the dinoflagellate Alexandrium tamarense (Lebour) Balech. Int J Syst Evol Microbiol 2003; 53: 1901– 1906 [CrossRef] [PubMed]
    [Google Scholar]
  16. Jin L, Lee CS, Ahn CY, Lee HG, Lee S et al. Abundant iron and sulfur oxidizers in the stratified sediment of a eutrophic freshwater reservoir with annual cyanobacterial blooms. Sci Rep 2017; 7: 43814 [CrossRef] [PubMed]
    [Google Scholar]
  17. Bates RG, Bower VE. Alkaline solutions for pH control. Anal Chem 1956; 28: 1322– 1324 [CrossRef]
    [Google Scholar]
  18. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1: 138– 146 [Crossref]
    [Google Scholar]
  19. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982; 16: 772– 774 [PubMed]
    [Google Scholar]
  20. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13: 128– 130 [CrossRef]
    [Google Scholar]
  21. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66: 199– 202 [CrossRef]
    [Google Scholar]
  22. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
    [Google Scholar]
  23. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E E, Goodfellow M. (editors) Nucleic acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp. 115– 175
    [Google Scholar]
  24. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  25. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  27. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  30. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. SystZool 1971; 20: 406– 416
    [Google Scholar]
  31. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  33. Kang HS, Lee SD. Hirschia maritima sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2009; 59: 2264– 2268 [CrossRef] [PubMed]
    [Google Scholar]
  34. Park S, Yoon JH. Hirschia litorea sp. nov., isolated from seashore sediment, and emended description of the genus Hirschia. Int J Syst Evol Microbiol 2013; 63: 1684– 1689 [CrossRef] [PubMed]
    [Google Scholar]
  35. Lee SH, Shim JK, Kim JM, Choi HK, Jeon CO. Henriciella litoralis sp. nov., isolated from a tidal flat, transfer of Maribaculum marinum Lai et al. 2009 to the genus Henriciella as Henriciella aquimarina nom. nov. and emended description of the genus Henriciella. Int J Syst Evol Microbiol 2011; 61: 722– 727 [CrossRef] [PubMed]
    [Google Scholar]
  36. Moore RL, Weiner RM, Gebers R. Genus Hyphomonas Pongratz 1957 nom. rev. emend., Hyphomonas polymorpha Pongratz 1957 nom. rev. emend., and Hyphomonas neptunium (Leifson 1964) comb. nov. emend. (Hyphomicrobium neptunium). Int J Syst Bacteriol 1984; 34: 71– 73 [CrossRef]
    [Google Scholar]
  37. Abraham WR, Strömpl C, Meyer H, Lindholst S, Moore ER et al. Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. Int J Syst Bacteriol 1999; 49: 1053– 1073 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002311
Loading
/content/journal/ijsem/10.1099/ijsem.0.002311
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error