1887

Abstract

Two Gram-stain-positive, rod-shaped and endospore-forming bacteria that represent a single species, designated strains KJ1-10-99 and KJ1-10-93, were isolated from a saline desert of Little Rann of Kutch, Gujarat, India. Analysis of 16S rRNA gene sequences revealed that the isolates belonged to the family Bacillaceae and were closely related to each other with 16S rRNA gene sequence similarity of 99.9 %. However, these two isolates formed a novel phylogenetic branch within this family. Both strains were aerobic, catalase and oxidase positive, and could grow optimally at 37 °C and pH 9. Further, strains KJ1-10-99 and KJ1-10-93 grew optimally at a NaCl concentration of 7.5 and 15 % (w/v), respectively. Both strains shared highest sequence similarity with Fermentibacillus polygoni IEB3 (96.90 %) followed by Bacillus nanhaiisediminis NH3 (96.3 %) and Bacillus alkalinitrilicus ANL-iso4 (96.3 %). The major cellular fatty acids were anteiso-C15 : 0, anteiso-C17:0, C16 : 0, and iso-C15 : 0. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol in both strains. The predominant isoprenoid quinone was MK-7 in both the strains. The peptidoglycan contained meso-diaminopimelic acid (meso-DAP) as the diagnostic diamino acid. The DNA G+C content of strains KJ1-10-99 and KJ1-10-93 were 48.7 and 48.9 mol% respectively. Both strains could be distinguished from closest phylogenetic neighbours based on a number of phenotypic properties. On the basis of polyphasic taxonomic analysis and phylogenetic data, we conclude that the strains KJ1-10-99 (=LMG 29918=KCTC 33878) and KJ1-10-93 (=LMG 29919=KCTC 33877) represent a novel species of a new genus in the family Bacillaceae , order Bacillales , for which the name Desertibacillus haloalkaliphilus gen. nov., sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002310
2017-09-21
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4435.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002310&mimeType=html&fmt=ahah

References

  1. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59: 2114– 2121 [CrossRef] [PubMed]
    [Google Scholar]
  2. Horikoshi K. Extremophiles Handbook Heidelberg: Springer; 2011; [Crossref]
    [Google Scholar]
  3. Márquez MC, Carrasco IJ, Xue Y, Ma Y, Cowan DA et al. Aquisalibacillus elongatus gen. nov., sp. nov., a moderately halophilic bacterium of the family Bacillaceae isolated from a saline lake. Int J Syst Evol Microbiol 2008; 58: 1922– 1926 [CrossRef] [PubMed]
    [Google Scholar]
  4. Schlesner H, Lawson PA, Collins MD, Weiss N, Wehmeyer U et al. Filobacillus milensis gen. nov., sp. nov., a new halophilic spore-forming bacterium with Orn-D-Glu-type peptidoglycan. Int J Syst Evol Microbiol 2001; 51: 425– 431 [CrossRef] [PubMed]
    [Google Scholar]
  5. Echigo A, Fukushima T, Mizuki T, Kamekura M, Usami R. Halalkalibacillus halophilus gen. nov., sp. nov., a novel moderately halophilic and alkaliphilic bacterium isolated from a non-saline soil sample in Japan. Int J Syst Evol Microbiol 2007; 57: 1081– 1085 [CrossRef] [PubMed]
    [Google Scholar]
  6. Cao SJ, Qu JH, Yang JS, Sun Q, Yuan HL. Halolactibacillus alkaliphilus sp. nov., a moderately alkaliphilic and halophilic bacterium isolated from a soda lake in Inner Mongolia, China, and emended description of the genus Halolactibacillus. Int J Syst Evol Microbiol 2008; 58: 2169– 2173 [CrossRef] [PubMed]
    [Google Scholar]
  7. Mayr R, Busse HJ, Worliczek HL, Ehling-Schulz M, Scherer S. Ornithinibacillus gen. nov., with the species Ornithinibacillus bavariensis sp. nov. and Ornithinibacillus californiensis sp. nov. Int J Syst Evol Microbiol 2006; 56: 1383– 1389 [CrossRef] [PubMed]
    [Google Scholar]
  8. An SY, Asahara M, Goto K, Kasai H, Yokota A. Terribacillus saccharophilus gen. nov., sp. nov. and Terribacillus halophilus sp. nov., spore-forming bacteria isolated from field soil in Japan. Int J Syst Evol Microbiol 2007; 57: 51– 55 [CrossRef] [PubMed]
    [Google Scholar]
  9. Lu J, Nogi Y, Takami H. Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol Lett 2001; 205: 291– 297 [CrossRef] [PubMed]
    [Google Scholar]
  10. Chen YG, Cui XL, Zhang YQ, Li WJ, Wang YX et al. Paraliobacillus quinghaiensis sp. nov., isolated from salt-lake sediment in China. Int J Syst Evol Microbiol 2009; 59: 28– 33 [CrossRef] [PubMed]
    [Google Scholar]
  11. Tanasupawat S, Namwong S, Kudo T, Itoh T. Piscibacillus salipiscarius gen. nov., sp. nov., a moderately halophilic bacterium from fermented fish (pla-ra) in Thailand. Int J Syst Evol Microbiol 2007; 57: 1413– 1417 [CrossRef] [PubMed]
    [Google Scholar]
  12. Chen YG, Zhang YQ, Xiao HD, Liu ZX, Yi LB et al. Pontibacillus halophilus sp. nov., a moderately halophilic bacterium isolated from a sea urchin. Int J Syst Evol Microbiol 2009; 59: 1635– 1639 [CrossRef] [PubMed]
    [Google Scholar]
  13. Ren PG, Zhou PJ. Salinibacillus aidingensis gen. nov., sp. nov. and Salinibacillus kushneri sp. nov., moderately halophilic bacteria isolated from a neutral saline lake in Xin-Jiang, China. Int J Syst Evol Microbiol 2005; 55: 949– 953 [CrossRef] [PubMed]
    [Google Scholar]
  14. Albuquerque L, Tiago I, Rainey FA, Taborda M, Nobre MF et al. Salirhabdus euzebyi gen. nov., sp. nov., a gram-positive, halotolerant bacterium isolated from a sea salt evaporation pond. Int J Syst Evol Microbiol 2007; 57: 1566– 1571 [CrossRef] [PubMed]
    [Google Scholar]
  15. Carrasco IJ, Márquez MC, Xue Y, Ma Y, Cowan DA et al. Salsuginibacillus kocurii gen. nov., sp. nov., a moderately halophilic bacterium from soda-lake sediment. Int J Syst Evol Microbiol 2007; 57: 2381– 2386 [CrossRef] [PubMed]
    [Google Scholar]
  16. Carrasco IJ, Márquez MC, Xue Y, Ma Y, Cowan DA et al. Sediminibacillus halophilus gen. nov., sp. nov., a moderately halophilic, gram-positive bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2008; 58: 1961– 1967 [CrossRef] [PubMed]
    [Google Scholar]
  17. Ren PG, Zhou PJ. Tenuibacillus multivorans gen. nov., sp. nov., a moderately halophilic bacterium isolated from saline soil in Xin-Jiang, China. Int J Syst Evol Microbiol 2005; 55: 95– 99 [CrossRef] [PubMed]
    [Google Scholar]
  18. García MT, Gallego V, Ventosa A, Mellado E. Thalassobacillus devorans gen. nov., sp. nov., a moderately halophilic, phenol-degrading, gram-positive bacterium. Int J Syst Evol Microbiol 2005; 55: 1789– 1795 [CrossRef] [PubMed]
    [Google Scholar]
  19. Wang X, Xue Y, Ma Y. Streptohalobacillus salinus gen. nov., sp. nov., a moderately halophilic, Gram-positive, facultative anaerobe isolated from subsurface saline soil. Int J Syst Evol Microbiol 2011; 61: 1127– 1132 [CrossRef] [PubMed]
    [Google Scholar]
  20. Amoozegar MA, Bagheri M, Didari M, Shahzedeh Fazeli SA, Schumann P et al. Saliterribacillus persicus gen. nov., sp. nov., a moderately halophilic bacterium isolated from a hypersaline lake. Int J Syst Evol Microbiol 2013; 63: 345– 351 [CrossRef] [PubMed]
    [Google Scholar]
  21. Margesin R, Schinner F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 2001; 5: 73– 83 [CrossRef] [PubMed]
    [Google Scholar]
  22. Nogi Y, Takami H, Horikoshi K. Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 2005; 55: 2309– 2315 [CrossRef] [PubMed]
    [Google Scholar]
  23. Nowlan B, Dodia MS, Singh SP, Patel BK. Bacillus okhensis sp. nov., a halotolerant and alkalitolerant bacterium from an Indian saltpan. Int J Syst Evol Microbiol 2006; 56: 1073– 1077 [CrossRef] [PubMed]
    [Google Scholar]
  24. Pandey S, Singh SP. Organic solvent tolerance of an α-amylase from haloalkaliphilic bacteria as a function of pH, temperature, and salt concentrations. Appl Biochem Biotechnol 2012; 166: 1747– 1757 [CrossRef] [PubMed]
    [Google Scholar]
  25. Purohit MK, Singh SP. Cloning, over expression and functional attributes of serine proteases from Oceanobacillus iheyensis OMA 18 and Haloalkaliphilic bacterium OME 12. Process Biochem 2014; 49: 61– 68 [CrossRef]
    [Google Scholar]
  26. Raval VH, Pillai S, Rawal CM, Singh SP. Biochemical and structural characterization of a detergent-stable serine alkaline protease from seawater haloalkaliphilic bacteria. Process Biochem 2014; 49: 955– 962 [CrossRef]
    [Google Scholar]
  27. Raval VH, Rawal CM, Pandey S, Bhatt HB, Dahima BR et al. Cloning, heterologous expression and structural characterization of an alkaline serine protease from sea water haloalkaliphilic bacterium. Ann Microbiol 2015; 65: 371– 381 [CrossRef]
    [Google Scholar]
  28. Pérez-Davó A, Aguilera M, Ramos-Cormenzana A, Monteoliva-Sánchez M. Alkalibacillus almallahensis sp. nov., a halophilic bacterium isolated from an inland solar saltern. Int J Syst Evol Microbiol 2014; 64: 2066– 2071 [CrossRef] [PubMed]
    [Google Scholar]
  29. Gupta V, Ansari AA. Geomorphic portrait of the little rann of kutch. Arab J Geosci 2014; 7: 527– 536 [CrossRef]
    [Google Scholar]
  30. Bhatt HB, Singh SP. Phylogenetic and phenogram based diversity of haloalkaliphilic bacteria from the saline desert. Microbial Biotechnology: Technological Challenges and Developmental Trends Apple Academic Press; 2016; pp. 373– 386 [Crossref]
    [Google Scholar]
  31. Patel R, Mevada V, Prajapati D, Dudhagara P, Koringa P et al. Metagenomic sequence of saline desert microbiota from wild ass sanctuary, Little Rann of Kutch, Gujarat, India. Genom Data 2015; 3: 137– 139 [CrossRef] [PubMed]
    [Google Scholar]
  32. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: Wiley; 1991; pp. 115– 148
    [Google Scholar]
  33. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  34. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  35. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  36. Stackebrandt E, Goebel BM. Taxonomic note: A place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
  37. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002; 52: 1043– 1047 [CrossRef] [PubMed]
    [Google Scholar]
  38. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33: 152– 155
    [Google Scholar]
  39. Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science 1933; 77: 194 [CrossRef] [PubMed]
    [Google Scholar]
  40. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 5th ed. Menlo Park, CA: Benjamin/Cummings; 1998
    [Google Scholar]
  41. Lakshmi KV, Sasikala C, Ashok Kumar GV, Chandrasekaran R, Ramana C. Phaeovibrio sulfidiphilus gen. nov., sp. nov., phototrophic alphaproteobacteria isolated from brackish water. Int J Syst Evol Microbiol 2011; 61: 828– 833 [CrossRef] [PubMed]
    [Google Scholar]
  42. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  43. Azmatunnisa M, Rahul K, Subhash Y, Sasikala C, Ramana C. Bacillus oleivorans sp. nov., a diesel oil-degrading and solvent-tolerant bacterium. Int J Syst Evol Microbiol 2015; 65: 1310– 1315 [CrossRef] [PubMed]
    [Google Scholar]
  44. Oren A, Duker S, Ritter S. The polar lipid composition of walsby's square bacterium. FEMS Microbiol Lett 1996; 138: 135– 140 [CrossRef]
    [Google Scholar]
  45. Kates M. Techniques of Lipidology New York: Elsevier; 1972; [Crossref]
    [Google Scholar]
  46. Hirota K, Aino K, Yumoto I. Fermentibacillus polygoni gen. nov., sp. nov., an alkaliphile that reduces indigo dye. Int J Syst Evol Microbiol 2016; 66: 2247– 2253 [CrossRef] [PubMed]
    [Google Scholar]
  47. Zhang J, Wang J, Song F, Fang C, Xin Y et al. Bacillus nanhaiisediminis sp. nov., an alkalitolerant member of Bacillus rRNA group 6. Int J Syst Evol Microbiol 2011; 61: 1078– 1083 [CrossRef] [PubMed]
    [Google Scholar]
  48. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 208 [Crossref]
    [Google Scholar]
  49. Rhuland LE, Work E, Denman RF, Hoare DS. The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 1955; 77: 4844– 4846 [CrossRef]
    [Google Scholar]
  50. Zhai L, Liao T, Xue Y, Ma Y. Bacillus daliensis sp. nov., an alkaliphilic, gram-positive bacterium isolated from a soda lake. Int J Syst Evol Microbiol 2012; 62: 949– 953 [CrossRef] [PubMed]
    [Google Scholar]
  51. Xie CH, Yokota A. Phylogenetic analyses of lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003; 49: 345– 349 [CrossRef] [PubMed]
    [Google Scholar]
  52. Mehrshad M, Amoozegar MA, Didari M, Bagheri M, Fazeli SA et al. Bacillus halosaccharovorans sp. nov., a moderately halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2013; 63: 2776– 2781 [CrossRef] [PubMed]
    [Google Scholar]
  53. Bagheri M, Didari M, Amoozegar MA, Schumann P, Sánchez-Porro C et al. Bacillus iranensis sp. nov., a moderate halophile from a hypersaline lake. Int J Syst Evol Microbiol 2012; 62: 811– 816 [CrossRef] [PubMed]
    [Google Scholar]
  54. Chen YG, Zhang L, Zhang YQ, He JW, Klenk HP et al. Bacillus nanhaiensis sp. nov., isolated from an oyster. Int J Syst Evol Microbiol 2011; 61: 888– 893 [CrossRef] [PubMed]
    [Google Scholar]
  55. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3: 208– 218 [CrossRef]
    [Google Scholar]
  56. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  57. Hirota K, Aino K, Yumoto I. Corrigendum to Fermentibacillus polygoni gen. nov., sp. nov., an alkaliphile that reduces indigo dye. Int J Syst Evol Microbiol 2016; 66: 3768 [CrossRef] [PubMed]
    [Google Scholar]
  58. Sorokin DY, van Pelt S, Tourova TP. Utilization of aliphatic nitriles under haloalkaline conditions by Bacillus alkalinitrilicus sp. nov. isolated from soda solonchak soil. FEMS Microbiol Lett 2008; 288: 235– 240 [CrossRef] [PubMed]
    [Google Scholar]
  59. Switzer Blum J, Burns Bindi A, Buzzelli J, Stolz JF, Oremland RS. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 1998; 171: 19– 30 [CrossRef] [PubMed]
    [Google Scholar]
  60. Albert RA, Archambault J, Lempa M, Hurst B, Richardson C et al. Proposal of Viridibacillus gen. nov. and reclassification of Bacillus arvi, Bacillus arenosi and Bacillus neidei as Viridibacillus arvi gen. nov., comb. nov., Viridibacillus arenosi comb. nov. and Viridibacillus neidei comb. nov. Int J Syst Evol Microbiol 2007; 57: 2729– 2737 [CrossRef] [PubMed]
    [Google Scholar]
  61. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006; 56: 781– 786 [CrossRef] [PubMed]
    [Google Scholar]
  62. Bhandari V, Ahmod NZ, Shah HN, Gupta RS. Molecular signatures for Bacillus species: demarcation of the Bacillus subtilis and Bacillus cereus clades in molecular terms and proposal to limit the placement of new species into the genus Bacillus. Int J Syst Evol Microbiol 2013; 63: 2712– 2726 [CrossRef] [PubMed]
    [Google Scholar]
  63. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12: 635– 645 [CrossRef] [PubMed]
    [Google Scholar]
  64. Minnikin DE, Goodfellow M. Lipids in the classification of Bacillus and related taxa. In Berkeley RCW, Goodfellow M. (editors) The Aerobic Endospore-Forming Bacteria. Special Publication of the Society for General Microbiology, No. 4 London: Academic Press; 1981; pp. 59– 90
    [Google Scholar]
  65. Kämpfer P. Limits and Possibilities of Total Fatty Acid Analysis for Classification and Identification of Bacillus Species. Syst Appl Microbiol 1994; 17: 86– 98 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002310
Loading
/content/journal/ijsem/10.1099/ijsem.0.002310
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error