1887

Abstract

An endophytic bacterium, MA-69, was isolated from the storage liquid in the stems of trees at the ancient Ugan River in Xinjiang, PR China. Strain MA-69 was found to be short rod-shaped, Gram-stain-negative, non-spore-forming, aerobic and motile by means of a monopolar flagellum. According to phylogenetic analysis based on 16S rRNA gene sequences, strain MA-69 was assigned to the genus with highest 16S rRNA gene sequence similarity of 97.5 % to JCM 12708, followed by JCM 30078 (97.5 %), DSM 6083 (97.1 %), ATCC 49674 (96.1 %) and DSM 14015 (95.9 %). Analysis of strain MA-69 based on the three housekeeping genes, , and , further confirmed the isolate to be distinctly delineated from species of the genus . The DNA G+C content of strain MA-69 was 64.1 mol%. DNA–DNA hybridization with JCM 12708, JCM 30078 and DSM 6083 revealed 62.9, 60.1 and 49.0 % relatedness, respectively. The major fatty acids in strain MA-69 were summed feature 3 (25.7 %), summed feature 8 (24.0 %), Ccyclo ω8 (19.9 %), C (14.6 %) and C (6.3 %). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Q-9 was the major quinone in strain MA-69. Based on phenotypic, chemotaxonomic and phylogenetic properties, strain MA-69 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MA-69 (=CCTCC AB 2013065=KCTC 42447).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002295
2017-11-01
2021-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4372.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002295&mimeType=html&fmt=ahah

References

  1. Migula W. Über ein neues system der bakterien. Arb Bakteriol Inst Karlsruhe 1894; 1:235–238
    [Google Scholar]
  2. Zhang DC, Liu HC, Zhou YG, Schinner F, Margesin R et al. Pseudomonas bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011; 61:2333–2337 [View Article][PubMed]
    [Google Scholar]
  3. Pascual J, Lucena T, Ruvira MA, Giordano A, Gambacorta A et al. Pseudomonas litoralis sp. nov., isolated from mediterranean seawater. Int J Syst Evol Microbiol 2012; 62:438–444 [View Article][PubMed]
    [Google Scholar]
  4. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al. Pseudomonas formosensis sp. nov., a gamma-proteobacteria isolated from food-waste compost in Taiwan. Int J Syst Evol Microbiol 2013; 63:3168–3174 [View Article][PubMed]
    [Google Scholar]
  5. Palleroni NJ. Introduction to the family Pseudomonadaceae . In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. et al. (editors) The Prokaryotes, 2nd ed. New York, NY: Springer; 1992 pp. 3071–3085
    [Google Scholar]
  6. Romanenko LA, Uchino M, Falsen E, Frolova GM, Zhukova NV et al. Pseudomonas pachastrellae sp. nov., isolated from a marine sponge. Int J Syst Evol Microbiol 2005; 55:919–924 [View Article][PubMed]
    [Google Scholar]
  7. Rozahon M, Ismayil N, Hamood B, Erkin R, Abdurahman M et al. Rhizobium populi sp. nov., an endophytic bacterium isolated from Populus euphratica . Int J Syst Evol Microbiol 2014; 64:3215–3221 [View Article][PubMed]
    [Google Scholar]
  8. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 21–41
    [Google Scholar]
  9. Scheidle M, Dittrich B, Klinger J, Ikeda H, Klee D et al. Controlling pH in shake flasks using polymer-based controlled-release discs with pre-determined release kinetics. BMC Biotechnol 2011; 11:25 [View Article][PubMed]
    [Google Scholar]
  10. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  11. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  13. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  14. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [Crossref]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific treetopology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  19. Ait Tayeb L, Ageron E, Grimont F, Grimont PA. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 2005; 156:763–773 [View Article][PubMed]
    [Google Scholar]
  20. Pascual J, Macián MC, Arahal DR, Garay E, Pujalte MJ. Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. Int J Syst Evol Microbiol 2010; 60:154–165 [View Article][PubMed]
    [Google Scholar]
  21. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  22. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  23. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207 [Crossref]
    [Google Scholar]
  24. Palleroni NJ. Genus I. Pseudomonas Migula 1894, 237AL (Nom. Cons., Opin. 5 of the Jud.367 Comm. 1952, 121). In Boone DR, Brenner DJ, Castenholz RW, Garrity GM, Krieg NR. et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 2 part B New York, NY: Springer; 2005 pp. 323–379
    [Google Scholar]
  25. Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bradley RS et al. Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 1991; 41:582–587 [View Article]
    [Google Scholar]
  26. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  27. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002; 52:1043–1047 [View Article][PubMed]
    [Google Scholar]
  28. Hou BC, Wang ET, Li Y, Jia RZ, Chen WF et al. Rhizobium tibeticum sp. nov., a symbiotic bacterium isolated from Trigonella archiducis-nicolai (Sirj.) Vassilcz. Int J Syst Evol Microbiol 2009; 59:3051–3057 [View Article][PubMed]
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  30. Ventosa A, Marquez MC, Kocur M, Tindall BJ. Comparative study of "Micrococcus sp." strains CCM 168 and CCM 1405 and members of the genus Salinicoccus . Int J Syst Bacteriol 1993; 43:245–248 [View Article][PubMed]
    [Google Scholar]
  31. Feng Z, Zhang J, Huang X, Zhang J, Chen M et al. Pseudomonas zeshuii sp. nov., isolated from herbicide-contaminated soil. Int J Syst Evol Microbiol 2012; 62:2608–2612 [View Article][PubMed]
    [Google Scholar]
  32. Hatayama K, Kawai S, Shoun H, Ueda Y, Nakamura A. Pseudomonas azotifigens sp. nov., a novel nitrogen-fixing bacterium isolated from a compost pile. Int J Syst Evol Microbiol 2005; 55:1539–1544 [View Article][PubMed]
    [Google Scholar]
  33. Lin SY, Hameed A, Hung MH, Liu YC, Hsu YH et al. Pseudomonas matsuisoli sp. nov., isolated from a soil sample. Int J Syst Evol Microbiol 2015; 65:902–909 [View Article][PubMed]
    [Google Scholar]
  34. Bennasar A, Rosselló-Mora R, Lalucat J, Moore ER. 16S rRNA gene sequence analysis relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov. Int J Syst Bacteriol 1996; 46:200–205 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002295
Loading
/content/journal/ijsem/10.1099/ijsem.0.002295
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error