sp. nov., a novel species of the complex isolated from hospital settings and agricultural soils Free

Abstract

Bacteria from the complex (Bcc) are capable of causing severe infections in patients with cystic fibrosis (CF). These opportunistic pathogens are also widely distributed in natural and man-made environments. After a 12-year epidemiological surveillance involving Bcc bacteria from respiratory secretions of Argentinean patients with CF and from hospital settings, we found six isolates of the Bcc with a concatenated species-specific allele sequence that differed by more than 3 % from those of the Bcc with validly published names. According to the multilocus sequence analysis (MLSA), these isolates clustered with the agricultural soil strain, sp. PBP 78, which was already deposited in the PubMLST database. The isolates were examined using a polyphasic approach, which included 16S rRNA, , Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), DNA base composition, average nucleotide identities (ANIs), fatty acid profiles, and biochemical characterizations. The results of the present study demonstrate that the seven isolates represent a single novel species within the Bcc, for which the name sp. nov. is proposed. sp. nov. CAMPA 1040 (=LMG 29660=DSM 103137) was designated the type strain of the novel species, which can be differentiated from other species of the Bcc mainly from gene sequence analysis, MLSA, ANIb, MALDI-TOF MS analysis, and some biochemical tests, including the ability to grow at 42 °C, aesculin hydrolysis, and lysine decarboxylase and β-galactosidase activities.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002293
2018-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/14.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002293&mimeType=html&fmt=ahah

References

  1. Coenye T, Vandamme P. Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 2003; 5:719–729 [View Article][PubMed]
    [Google Scholar]
  2. Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E et al. Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 2009; 59:102–111 [View Article][PubMed]
    [Google Scholar]
  3. Peeters C, Zlosnik JE, Spilker T, Hird TJ, LiPuma JJ et al. Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. Syst Appl Microbiol 2013; 36:483–489 [View Article][PubMed]
    [Google Scholar]
  4. De Smet B, Mayo M, Peeters C, Zlosnik JE, Spilker T et al. Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources. Int J Syst Evol Microbiol 2015; 65:2265–2271 [View Article][PubMed]
    [Google Scholar]
  5. Baldwin A, Mahenthiralingam E, Drevinek P, Vandamme P, Govan JR et al. Environmental Burkholderia cepacia complex isolates in human infections. Emerg Infect Dis 2007; 13:458–461 [View Article][PubMed]
    [Google Scholar]
  6. Martin M, Christiansen B, Caspari G, Hogardt M, von Thomsen AJ et al. Hospital-wide outbreak of Burkholderia contaminans caused by prefabricated moist washcloths. J Hosp Infect 2011; 77:267–270 [View Article][PubMed]
    [Google Scholar]
  7. Drevinek P, Mahenthiralingam E. Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 2010; 16:821–830 [View Article][PubMed]
    [Google Scholar]
  8. Abe K, D'Angelo MT, Sunenshine R, Noble-Wang J, Cope J et al. Outbreak of Burkholderia cepacia bloodstream infection at an outpatient hematology and oncology practice. Infect Control Hosp Epidemiol 2007; 28:1311–1313 [View Article][PubMed]
    [Google Scholar]
  9. Martina P, Bettiol M, Vescina C, Montanaro P, Mannino MC et al. Genetic diversity of Burkholderia contaminans isolates from cystic fibrosis patients in Argentina. J Clin Microbiol 2013; 51:339–344 [View Article][PubMed]
    [Google Scholar]
  10. Heo ST, Kim SJ, Jeong YG, Bae IG, Jin JS et al. Hospital outbreak of Burkholderia stabilis bacteraemia related to contaminated chlorhexidine in haematological malignancy patients with indwelling catheters. J Hosp Infect 2008; 70:241–245 [View Article][PubMed]
    [Google Scholar]
  11. Mahenthiralingam E, Bischof J, Byrne SK, Radomski C, Davies JE et al. DNA-Based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J Clin Microbiol 2000; 38:3165–3173[PubMed]
    [Google Scholar]
  12. Mahenthiralingam E, Baldwin A, Vandamme P. Burkholderia cepacia complex infection in patients with cystic fibrosis. J Med Microbiol 2002; 51:533–538 [View Article][PubMed]
    [Google Scholar]
  13. Papaleo MC, Perrin E, Maida I, Fondi M, Fani R et al. Identification of species of the Burkholderia cepacia complex by sequence analysis of the hisA gene. J Med Microbiol 2010; 59:1163–1170 [View Article][PubMed]
    [Google Scholar]
  14. Baldwin A, Mahenthiralingam E, Thickett KM, Honeybourne D, Maiden MC et al. Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. J Clin Microbiol 2005; 43:4665–4673 [View Article][PubMed]
    [Google Scholar]
  15. Vanlaere E, LiPuma JJ, Baldwin A, Henry D, De Brandt E et al. Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol 2008; 58:1580–1590 [View Article][PubMed]
    [Google Scholar]
  16. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102:2567–2572 [View Article][PubMed]
    [Google Scholar]
  17. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  18. Martina P, Feliziani S, Juan C, Bettiol M, Gatti B et al. Hypermutation in Burkholderia cepacia complex is mediated by DNA mismatch repair inactivation and is highly prevalent in cystic fibrosis chronic respiratory infection. Int J Med Microbiol 2014; 304:1182–1191 [View Article][PubMed]
    [Google Scholar]
  19. American Public Health Association Standard Methods for the Examination of Water and Wastewater, 21st ed. Washington, DC: APHA; 2005
    [Google Scholar]
  20. Draghi WO, Peeters C, Cnockaert M, Snauwaert C, Wall LG et al. Burkholderia cordobensis sp. nov., from agricultural soils. Int J Syst Evol Microbiol 2014; 64:2003–2008 [View Article][PubMed]
    [Google Scholar]
  21. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt EGM. (editor) Nucleic Acid Techniques in Bacterial systematics New York: John Wiley & Sons, Inc.; 1991 pp. 115–176
    [Google Scholar]
  22. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  23. Desai AP, Stanley T, Atuan M, Mckey J, LiPuma JJ et al. Use of matrix assisted laser desorption ionisation-time of flight mass spectrometry in a paediatric clinical laboratory for identification of bacteria commonly isolated from cystic fibrosis patients. J Clin Pathol 2012; 65:835–838 [View Article][PubMed]
    [Google Scholar]
  24. Miñán A, Bosch A, Lasch P, Stämmler M, Serra DO et al. Rapid identification of Burkholderia cepacia complex species including strains of the novel Taxon K, recovered from cystic fibrosis patients by intact cell MALDI-ToF mass spectrometry. Analyst 2009; 134:1138–1148 [View Article][PubMed]
    [Google Scholar]
  25. Lambiase A, del Pezzo M, Cerbone D, Raia V, Rossano F et al. Rapid identification of Burkholderia cepacia complex species recovered from cystic fibrosis patients using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Microbiol Methods 2013; 92:145–149 [View Article][PubMed]
    [Google Scholar]
  26. Lasch P, Naumann D. MALDI-TOF mass spectrometry for the rapid identification of highly pathogenic microorganisms. In Jiri Stulik J, Toman R, Butaye P, Ulrich R. (editors) Proteomics, Glycomics and Antigenicity of BSL3 and BSL4 Agents Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2011 pp. 212–219
    [Google Scholar]
  27. Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I et al. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J Clin Microbiol 2008; 46:1946–1954 [View Article][PubMed]
    [Google Scholar]
  28. Lasch P, Naumann D. Infrared spectroscopy in microbiology. Encyclopedia of Analytical Chemistry Berlin, Germany: John Wiley & Sons, Ltd; 2015 pp. 1–32
    [Google Scholar]
  29. Lasch P. MicrobeMS: A Matlab toolbox for analysis of microbial MALDI-TOF mass spectra; 2017 www.microbe-ms.com
  30. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  31. Vandamme P, Dawyndt P. Classification and identification of the Burkholderia cepacia complex: past, present and future. Syst Appl Microbiol 2011; 34:87–95 [View Article][PubMed]
    [Google Scholar]
  32. De Carvalho CC, Caramujo MJ. Bacterial diversity assessed by cultivation-based techniques shows predominance of Staphylococccus species on coins collected in Lisbon and Casablanca. FEMS Microbiol Ecol 2014; 88:26–37 [View Article][PubMed]
    [Google Scholar]
  33. Vauterin L, Yang P, Swings J. Utilization of fatty acid methyl esters for the differentiation of new Xanthomonas species. Int J Syst Bacteriol 1996; 46:298–304 [View Article]
    [Google Scholar]
  34. Henry DA, Mahenthiralingam E, Vandamme P, Coenye T, Speert DP. Phenotypic methods for determining genomovar status of the Burkholderia cepacia complex. J Clin Microbiol 2001; 39:1073–1078 [View Article][PubMed]
    [Google Scholar]
  35. Ligozzi M, Bernini C, Bonora MG, de Fatima M, Zuliani J et al. Evaluation of the VITEK 2 system for identification and antimicrobial susceptibility testing of medically relevant gram-positive cocci. J Clin Microbiol 2002; 40:1681–1686 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002293
Loading
/content/journal/ijsem/10.1099/ijsem.0.002293
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed