1887

Abstract

A Gram-stain-positive, non-spore-forming actinobacterial strain, designated CPCC 204077, was isolated from the surface-sterilized root of a medicinal plant Huperzia serrata (Thunb.) collected from Sichuan Province, south-west China. The peptidoglycan type of strain CPCC 204077 was detected as A4α with an l-Lys–l-Ser–d-Asp interpeptide bridge. Galactose, glucose, rhamnose and ribose were the sugar compositions in the whole-cell hydrolysates. MK-8(H4) was the only menaquinone. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, one unidentified phospholipid and one unidentified glycolipid. The major fatty acid was iso-C16 : 0. The genomic DNA G+C content was 71.0 mol%. The phylogenetic tree based on 16S rRNA gene sequences showed that strain CPCC 204077 stood for a distinct lineage within the family Dermacoccaceae alongside the genera Branchiibius , Demetria and Barrientosiimonas , with the highest 16S rRNA gene sequence similarities to Branchiibius hedensis Mer 29717 (95.0 %), Calidifontibacter indicus PC IW02 (95.0 %), Barrientosiimonas humi 39 (94.9 %) and Demetria terragena HKI 0089 (94.7 %), and less than 94.7 % sequence similarities to all other species. Signature nucleotides in the 16S rRNA sequence showed that the strain contained the Dermacoccaceae family-specific 16S rRNA signature nucleotides and a genus-specific diagnostic nucleotide signature pattern. Combining the genotypic and phenotypic analyses, we propose that strain CPCC 204077 represents a novel species of a new genus in the family Dermacoccaceae with the name Allobranchiibius huperziae gen. nov., sp. nov. Strain CPCC 204077 (=NBRC 110719=DSM 29531) is the type strain of the type species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002284
2017-09-18
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/4210.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002284&mimeType=html&fmt=ahah

References

  1. Stackebrandt E, Schumann P. Description of Bogoriellaceae fam. nov., Dermacoccaceae fam. nov., Rarobacteraceae fam. nov. and Sanguibacteraceae fam. nov. and emendation of some families of the suborder Micrococcineae. Int J Syst Evol Microbiol 2000; 50: 1279– 1285 [CrossRef] [PubMed]
    [Google Scholar]
  2. Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 1995; 45: 682– 692 [CrossRef] [PubMed]
    [Google Scholar]
  3. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 1997; 47: 1129– 1133 [CrossRef] [PubMed]
    [Google Scholar]
  4. Ara I, Yamamura H, Tsetseg B, Daram D, Ando K. Luteipulveratus mongoliensis gen. nov., sp. nov., an actinobacterial taxon in the family Dermacoccaceae. Int J Syst Evol Microbiol 2010; 60: 574– 579 [CrossRef] [PubMed]
    [Google Scholar]
  5. Tang SK, Wu JY, Wang Y, Schumann P, Li WJ. Yimella lutea gen. nov., sp. nov., a novel actinobacterium of the family Dermacoccaceae. Int J Syst Evol Microbiol 2010; 60: 659– 663 [CrossRef] [PubMed]
    [Google Scholar]
  6. Sugimoto S, Kato T, Ito M, Sakata N, Tsuchida T et al. Branchiibius hedensis gen. nov., sp. nov., an actinobacterium isolated from a Japanese codling (Physiculus japonicus). Int J Syst Evol Microbiol 2011; 61: 1195– 1200 [CrossRef] [PubMed]
    [Google Scholar]
  7. Ruckmani A, Kaur I, Schumann P, Klenk HP, Mayilraj S. Calidifontibacter indicus gen. nov., sp. nov., a member of the family Dermacoccaceae isolated from a hot spring, and emended description of the family Dermacoccaceae. Int J Syst Evol Microbiol 2011; 61: 2419– 2424 [CrossRef] [PubMed]
    [Google Scholar]
  8. Anzai K, Sugiyama T, Sukisaki M, Sakiyama Y, Otoguro M et al. Flexivirga alba gen. nov., sp. nov., an actinobacterial taxon in the family Dermacoccaceae. J Antibiot 2011; 64: 613– 616 [CrossRef] [PubMed]
    [Google Scholar]
  9. Lee LH, Cheah YK, Sidik SM, Xie QY, Tang YL et al. Barrientosiimonas humi gen. nov., sp. nov., an actinobacterium of the family Dermacoccaceae. Int J Syst Evol Microbiol 2013; 63: 241– 248 [CrossRef] [PubMed]
    [Google Scholar]
  10. Kim SJ, Jang YH, Ahn JH, Weon HY, Schumann P et al. Rudaeicoccus suwonensis gen. nov., sp. nov., an actinobacterium isolated from the epidermal tissue of a root of a Phalaenopsis Orchid. Int J Syst Evol Microbiol 2013; 63: 1291– 1296 [CrossRef] [PubMed]
    [Google Scholar]
  11. Waksman SA. The Actinomycetesvol. II Classification, Identification and Description of Genera and Species Baltimore, Maryland: The Williams & Wilkins Company; 1961
    [Google Scholar]
  12. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55: 1149– 1153 [CrossRef] [PubMed]
    [Google Scholar]
  13. Yuan LJ, Zhang YQ, Guan Y, Wei YZ, Li QP et al. Saccharopolyspora antimicrobica sp. nov., an actinomycete from soil. Int J Syst Evol Microbiol 2008; 58: 1180– 1185 [CrossRef] [PubMed]
    [Google Scholar]
  14. Lechevalier H, Lechevalier MP. Classification des actinomycetes aerobes basée sur leur morphologie et leur composition chimique. Ann Inst Pasteur 1965; 108: 662– 673
    [Google Scholar]
  15. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy (SIM Special Publication no. 6) Fairfax, VA: Society for Industrial Microbiology; 1980; pp. 227– 291
    [Google Scholar]
  16. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36: 407– 477 [PubMed]
    [Google Scholar]
  17. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38: 101– 129 [Crossref]
    [Google Scholar]
  18. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  19. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  20. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series vol. 20) Manhattan, NY: Academic Press; 1985; pp. 173– 199
    [Google Scholar]
  21. Meier A, Kirschner P, Schröder KH, Wolters J, Kroppenstedt RM et al. Mycobacterium intermedium sp. nov. Int J Syst Bacteriol 1993; 43: 204– 209 [CrossRef] [PubMed]
    [Google Scholar]
  22. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57: 1424– 1428 [CrossRef] [PubMed]
    [Google Scholar]
  23. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  27. Kimura M. The Neutral Theory of Molecular Evolution Cambridge, Cambridgeshire: Cambridge University Press; 1983; [Crossref]
    [Google Scholar]
  28. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18: 1– 32 [CrossRef]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  31. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5: 109– 118 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002284
Loading
/content/journal/ijsem/10.1099/ijsem.0.002284
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error