1887

Abstract

A Gram-stain-negative and yellow-pigmented bacterial strain, designated TX0406, was isolated from an automobile evaporator core collected in Korea. The cells were non-motile, aerobic and rod-shaped. The strain grew at 15–37 °C (optimum, 25 °C), at pH 6.0–7.0 (optimum, 6.5) and in the presence of 0–1.5 % (w/v) NaCl. Phylogenetically, the strain was related to members of the genus (93.7–90.7 % 16S rRNA sequence similarities) and showed the highest sequence similarity of 93.7 % to JSH5-14. The major fatty acids of the strain were summed feature 3 (C 7 and/or C 6), C 5 and C. The predominant menaquinone was MK-7. The polar lipid profile revealed the presence of phosphatidylethanolamine, an unidentified aminolipid, unidentified aminophospholipids and unidentified lipids. The DNA G+C content of the strain was 58.7 mol%. Based on phenotypic, genotypic and chemotaxonomic data, strain TX0406 represents a novel species in the genus , for which the name sp. nov. (=KACC 19013=NBRC 112494) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002276
2017-10-01
2020-07-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/4195.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002276&mimeType=html&fmt=ahah

References

  1. Larkin JM, Borrall R. Spirosomaceae, a new family to contain the genera Spirosoma Migula 1894, Flectobacillus Larkin et al. 1977, and Runella Larkin and Williams 1978. Int J Syst Bacteriol 1978;28:595–596 [CrossRef]
    [Google Scholar]
  2. Finster KW, Herbert RA, Lomstein BA. Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 2009;59:839–844 [CrossRef][PubMed]
    [Google Scholar]
  3. Ahn JH, Weon HY, Kim SJ, Hong SB, Seok SJ et al. Spirosoma oryzae sp. nov., isolated from rice soil and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 2014;64:3230–3234 [CrossRef][PubMed]
    [Google Scholar]
  4. Ten LN, Xu JL, Jin FX, Im WT, Oh HM et al. Spirosoma panaciterrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009;59:331–335 [CrossRef][PubMed]
    [Google Scholar]
  5. Baik KS, Kim MS, Park SC, Lee DW, Lee SD et al. Spirosoma rigui sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2007;57:2870–2873 [CrossRef][PubMed]
    [Google Scholar]
  6. Fries J, Pfeiffer S, Kuffner M, Sessitsch A. Spirosoma endophyticum sp. nov., isolated from Zn- and Cd-accumulating Salix caprea. Int J Syst Evol Microbiol 2013;63:4586–4590 [CrossRef][PubMed]
    [Google Scholar]
  7. Chang X, Jiang F, Wang T, Kan W, Qu Z et al. Spirosoma arcticum sp. nov., isolated from high Arctic glacial till. Int J Syst Evol Microbiol 2014;64:2233–2237 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim DU, Ka JO. Roseomonas soli sp. nov., isolated from an agricultural soil cultivated with Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 2014;64:1024–1029 [CrossRef][PubMed]
    [Google Scholar]
  9. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  10. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  12. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  13. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  16. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. et al. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society For Microbiology; 2007; pp.309–329
    [Google Scholar]
  17. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd ed. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  18. Denner EB, Paukner S, Kämpfer P, Moore ER, Abraham WR et al. Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 2001;51:827–841 [CrossRef][PubMed]
    [Google Scholar]
  19. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  20. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murra RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  21. Ten LN, Xu JL, Jin FX, Im WT, Oh HM et al. Spirosoma panaciterrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009;59:331–335 [CrossRef][PubMed]
    [Google Scholar]
  22. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Netwark, DE: MIDI Inc; 1990
    [Google Scholar]
  23. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[Crossref]
    [Google Scholar]
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  25. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp.121–161
    [Google Scholar]
  26. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773[PubMed][Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002276
Loading
/content/journal/ijsem/10.1099/ijsem.0.002276
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error