1887

Abstract

Two proteolytic bacterial strains, BSker2 and BSker3, were enriched from sediments of hypersaline alkaline lakes in Kulunda Steppe (Altai, Russia) with chicken feathers as substrate, followed by pure culture isolation on hypersaline alkaline media with casein. The cells were non-motile, filamentous, flexible rods. The isolates were obligately aerobic heterotrophs utilizing proteins and peptides as growth substrates. Both were obligate alkaliphiles, but differed in their pH optimum for growth: pH 9.5–9.8 for Bsker2 and pH 8.5–8.8 for BSker3. The salt range for growth of both isolates was between 2 and 4.5 M total Na with an optimum at 2.5–3 M. No organic osmolytes were detected in cells of BSker2, but they accumulated high intracellular concentrations of K. The polar lipid fatty acids were dominated by unsaturated C16 and C18 species. The 16S rRNA gene phylogeny indicated that both strains belong to the recently proposed phylum Rhodothermaeota . BSker2 forms a novel genus-level branch, while BSker3 represents a novel species-level member in the genus Longimonas . On the basis of distinct phenotypic and genotypic properties, strain BSker2 (=JCM 31342=UNIQEM U1009) is proposed to be classified as a representative of a novel genus and species, Natronotalea proteinilyticagen. nov., sp. nov., and strain BSker3 (=JCM 31343=UNIQEM U1010) as a representative of a novel species, Longimonas haloalkaliphila sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002272
2017-09-18
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/4161.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002272&mimeType=html&fmt=ahah

References

  1. Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD et al. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 2014; 18: 791– 809 [CrossRef] [PubMed]
    [Google Scholar]
  2. Sorokin DY, Banciu HL, Muyzer G. Functional microbiology of soda lakes. Curr Opin Microbiol 2015; 25: 88– 96 [CrossRef] [PubMed]
    [Google Scholar]
  3. Samylina OS, Sapozhnikov FV, Gainova OY, Ryabova AV, Nikitin MA et al. Algo-bacterial phototrophic communities of soda lakes in Kulunda Steppe (Altai, Russia). Microbiology 2014; 83: 849– 860 [Crossref]
    [Google Scholar]
  4. Grant BD, Jones BE. Bacteria, archaea and viruses of soda lakes. In Schagerl M. (editor) Soda Lakes of East Africa Switzerland: Springer International Publishing; 2016; pp. 97– 147
    [Google Scholar]
  5. Horikoshi K. Alkaliphiles. Genetic Properties and Applications of Enzymes Tokyo: Kodansha; Berlin, Heidelberg, New York: Springer 2006
    [Google Scholar]
  6. Fujinami S, Fujisawa M. Industrial applications of alkaliphiles and their enzymes–past, present and future. Environ Technol 2010; 31: 845– 856 [CrossRef] [PubMed]
    [Google Scholar]
  7. Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK et al. Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 2011; 38: 769– 790 [CrossRef] [PubMed]
    [Google Scholar]
  8. Sorokin DY, Kublanov IV, Khijhniak TV. Natronospira proteinivora gen. nov., sp. nov., an extremely salt tolerant alkaliphilic protein-utilizing gammaproteobacterium from hypersaline soda lakes. Int J Syst Evol Microbiol 2017; 67: 2604– 2608 [Crossref]
    [Google Scholar]
  9. Munoz R, Rosselló-Móra R, Amann R. Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 2016; 39: 281– 296 [CrossRef] [PubMed]
    [Google Scholar]
  10. Pfennig N, Lippert KD. Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 1966; 55: 245– 256 [CrossRef]
    [Google Scholar]
  11. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13: 128– 130 [CrossRef]
    [Google Scholar]
  12. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66: 199– 202 [CrossRef]
    [Google Scholar]
  13. Labrenz M, Lawson PA, Tindall BJ, Collins MD, Hirsch P. Roseisalinus antarcticus gen. nov., sp. nov., a novel aerobic bacteriochlorophyll a-producing α-proteobacterium isolated from hypersaline Ekho Lake, Antarctica. Int J Syst Evol Microbiol 2005; 55: 41– 47 [CrossRef] [PubMed]
    [Google Scholar]
  14. Strömpl C, Tindall BJ, Jarvis GN, Lünsdorf H, Moore ER et al. A re-evaluation of the taxonomy of the genus Anaerovibrio, with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen. nov., comb. nov., and Anaerovibrio burkinabensis as Anaeroarcus burkinensis [corrig.] gen. nov., comb. nov. Int J Syst Bacteriol 1999; 49: 1861– 1872 [CrossRef] [PubMed]
    [Google Scholar]
  15. Collins MD. Analysis of isoprenoid quinones. Methods Microbiol 1985; 18: 329– 363 [Crossref]
    [Google Scholar]
  16. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37: 911– 917 [CrossRef] [PubMed]
    [Google Scholar]
  17. Galinski EA, Oren A. Isolation and structure determination of a novel compatible solute from the moderately halophilic purple sulfur bacterium Ectothiorhodospira marismortui. Eur J Biochem 1991; 198: 593– 598 [CrossRef] [PubMed]
    [Google Scholar]
  18. Galinski EA, Herzog RM. The role of trehalose as a substitute for nitrogen-containing compatible solutes (Ectothiorhodospira halochloris). Arch Microbiol 1990; 153: 607– 613 [CrossRef]
    [Google Scholar]
  19. Jörg Kunte H, Galinski EA, Trüper HG. A modified FMOC-method for the detection of amino acid-type osmolytes and tetrahydropyrimidines (ectoines). J Microbiol Methods 1993; 17: 129– 136 [CrossRef]
    [Google Scholar]
  20. Dinnbier U, Limpinsel E, Schmid R, Bakker EP. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 1988; 150: 348– 357 [CrossRef] [PubMed]
    [Google Scholar]
  21. Dötsch A, Severin J, Alt W, Galinski EA, Kreft JU. A mathematical model for growth and osmoregulation in halophilic bacteria. Microbiology 2008; 154: 2956– 2969 [CrossRef] [PubMed]
    [Google Scholar]
  22. Oren A. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front Microbiol 2013; 4: 315 [CrossRef] [PubMed]
    [Google Scholar]
  23. Oren A, Heldal M, Norland S, Galinski EA. Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles 2002; 6: 491– 498 [CrossRef] [PubMed]
    [Google Scholar]
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  25. Xia J, Zhou YX, Zhao LH, Chen GJ, Du ZJ. Longimonas halophila gen. nov., sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2015; 65: 2272– 2276 [CrossRef] [PubMed]
    [Google Scholar]
  26. Vaisman N, Oren A. Salisaeta longa gen. nov., sp. nov., a red, halophilic member of the Bacteroidetes. Int J Syst Evol Microbiol 2009; 59: 2571– 2574 [CrossRef] [PubMed]
    [Google Scholar]
  27. Xia J, Dunlap CA, Flor-Weiler L, Rooney AP, Chen GJ et al. Longibacter salinarum gen. nov., sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2016; 66: 3287– 3292 [CrossRef] [PubMed]
    [Google Scholar]
  28. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002272
Loading
/content/journal/ijsem/10.1099/ijsem.0.002272
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error