1887

Abstract

A nitrogen-fixing bacterium, designated NF2-4-5, was isolated from a paddy soil in Anseong City, Korea. Cells of strain NF2-4-5 were Gram-staining-positive, motile rods and aerobic. Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that the strain formed a distinct lineage within the genus and was closely related to RSA19 (98.7 %), Be17 (98.6 %), LAM0A28 (98.6 %) and SBR5 (98.6 %). Growth of strain NF2-4-5 occurs at temperatures of 18–37 °C, at pH 6.0–8.5 and between 0.5% and 2 % NaCl (w/v). The only respiratory quinone was MK-7. The cell wall peptidoglycan of strain NF2-4-5 contained meso-diaminopimelic acid. The main cellular fatty acids were C and anteiso-C. The major polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). The DNA G+C content was 56.36 mol%. The DNA–DNA hybridization relatedness between strain NF2-4-5 and four reference strains, RSA19, Be17, X19-5 and SBR5, was 22.0±0.3, 20.1±0.7, 18.3±0.3 and 12.6±0.5 %, respectively. The phenotypic, phylogenetic and chemotaxonomic results indicate that the strain NF2-4-5 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is NF2-4-5 (=KACC 18967=LMG 29963).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002269
2017-12-01
2024-11-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/4917.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002269&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 1993; 64:253–260[PubMed] [Crossref]
    [Google Scholar]
  2. Ash C, Priest FG, Collins MD. Paenibacillus gen. nov. In validation of the publication of new names and new combinations previously effectively published outside the IJSB, List no. 51. Int J Syst Bacteriol 1994; 44:852 [Crossref]
    [Google Scholar]
  3. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 1997; 47:289–298 [View Article][PubMed]
    [Google Scholar]
  4. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. Int J Syst Bacteriol 1997; 47:299–306 [Crossref]
    [Google Scholar]
  5. Slepecky RA, Hemphill HE. The genus Bacillus-nonmedical. In Balows A, Truper HG, Dworkin M, Harder W, K.-H.Schleifer et al. (editors) The Prokaryotes New York: Springer; 1992 pp. 1663–1696
    [Google Scholar]
  6. Claus D, Berkeley RCW. Genus Bacillus Cohn 1872, 174AL. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology vol. 2 Baltimore: Williams & Wilkins; 1986 pp. 1105–1139
    [Google Scholar]
  7. Yao R, Wang R, Wang D, Su J, Zheng S et al. Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int J Syst Evol Microbiol 2014; 64:805–811 [View Article][PubMed]
    [Google Scholar]
  8. Berge O, Guinebretière MH, Achouak W, Normand P, Heulin T. Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 2002; 52:607–616 [View Article][PubMed]
    [Google Scholar]
  9. Ma Y, Zhang J, Chen S. Paenibacillus zanthoxyli sp. nov., a novel nitrogen-fixing species isolated from the rhizosphere of Zanthoxylum simulans . Int J Syst Evol Microbiol 2007; 57:873–877 [View Article][PubMed]
    [Google Scholar]
  10. Ding Y, Wang J, Liu Y, Chen S. Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. J Appl Microbiol 2005; 99:1271–1281 [View Article][PubMed]
    [Google Scholar]
  11. Elo S, Suominen I, Kämpfer P, Juhanoja J, Salkinoja-Salonen M et al. Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 2001; 51:535–545 [View Article][PubMed]
    [Google Scholar]
  12. Cavalcante VA, Dobereiner J. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 1988; 108:23–31 [View Article]
    [Google Scholar]
  13. Kim JK, Kang MS, Park SC, Kim KM, Choi K et al. Sphingosinicella ginsenosidimutans sp. nov., with ginsenoside converting activity. J Microbiol 2015; 53:435–441 [View Article][PubMed]
    [Google Scholar]
  14. Ueda T, Suga Y, Yahiro N, Matsuguchi T. Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 1995; 177:1414–1417 [View Article][PubMed]
    [Google Scholar]
  15. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  16. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  21. Dahllöf I, Baillie H, Kjelleberg S. rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 2000; 66:3376–3380 [View Article][PubMed]
    [Google Scholar]
  22. Zhang D, Yang H, Zhang W, Huang Z, Liu SJ. Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. Int J Syst Evol Microbiol 2003; 53:1111–1114 [View Article][PubMed]
    [Google Scholar]
  23. Weon HY, Kim BY, Joa JH, Son JA, Song MH et al. Methylobacterium iners sp. nov. and Methylobacterium aerolatum sp. nov., isolated from air samples in Korea. Int J Syst Evol Microbiol 2008; 58:93–96 [View Article][PubMed]
    [Google Scholar]
  24. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993[PubMed]
    [Google Scholar]
  25. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press; 1974
    [Google Scholar]
  26. Ten LN, Im WT, Kim MK, Kang MS, Lee ST. Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 2004; 56:375–382 [View Article][PubMed]
    [Google Scholar]
  27. Kämpfer P. Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae . Zentralbl Bakteriol 1990; 273:164–172 [View Article][PubMed]
    [Google Scholar]
  28. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article][PubMed]
    [Google Scholar]
  29. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  30. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  31. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [Crossref]
    [Google Scholar]
  32. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  33. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477[PubMed]
    [Google Scholar]
  34. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.; 1990
    [Google Scholar]
  35. Guo X, Zhou S, Wang YW, Wang HM, Kong DL et al. Paenibacillus salinicaeni sp. nov., isolated from saline silt sample. Antonie van Leeuwenhoek 2016; 109:721–728 [View Article][PubMed]
    [Google Scholar]
  36. Jin HJ, Zhou YG, Liu HC, Chen SF. Paenibacillus jilunlii sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Begonia semperflorens. Int J Syst Evol Microbiol 2011; 61:1350–1355 [View Article][PubMed]
    [Google Scholar]
  37. Beneduzi A, Costa PB, Parma M, Melo IS, Bodanese-Zanettini MH et al. Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum. Int J Syst Evol Microbiol 2010; 60:128–133 [View Article][PubMed]
    [Google Scholar]
  38. Hong YY, Ma YC, Zhou YG, Gao F, Liu HC et al. Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus . Int J Syst Evol Microbiol 2009; 59:2656–2661 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.002269
Loading
/content/journal/ijsem/10.1099/ijsem.0.002269
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error