1887

Abstract

Ongoing changes in taxonomic methods, and in the rapid development of the taxonomic structure of species assigned to the have lead the International Committee of Systematic Bacteriology Subcommittee on the Taxonomy of and Related Bacteria to discuss significant updates to previous minimal standards for describing new species of and . This paper is the result of these discussions and proposes minimum requirements for the description of new species belonging to the families and thus including species in and The core underlying principle remains the use of appropriate phenotypic and genotypic methods to characterise strains sufficiently so as to effectively and unambiguously determine their taxonomic position in these families, and provide adequate means by which the new taxon can be distinguished from extant species and subspecies. This polyphasic taxonomic approach demands the use of appropriate reference data for comparison to ensure the novelty of proposed new taxa, and the recommended study of at least five strains to enable species diversity to be assessed. Methodological approaches for phenotypic and genotypic (including whole-genome sequence comparisons) characterisation are recommended.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002255
2017-12-01
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/5296.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002255&mimeType=html&fmt=ahah

References

  1. Garrity GM, Bell JA, Lilburn. Family II. Helicobacteraceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, 2 ed. vol. 2 (The Proteobacteria), Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York, USA: Springer; 2005 pp. 1168
    [Google Scholar]
  2. Sebald M, Véron M. Teneur en bases de L'ADN et classification des vibrions. Annales de l'Institut Pasteur 1963; 105:897–910
    [Google Scholar]
  3. Goodwin CS, Armstrong JA, Chilvers T, Peters M, Collins MD et al. Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. nov. as Helicobacter pylori comb. nov. and Helicobacter mustelae comb. nov., respectively. Int J Syst Bacteriol 1989; 39:397–405 [View Article]
    [Google Scholar]
  4. Campbell BJ, Engel AS, Porter ML, Takai K. The versatile ϵ-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 2006; 4:458–468 [View Article][PubMed]
    [Google Scholar]
  5. On SLW. Taxonomy, phylogeny, and methods for the identification of Campylobacter species. In Ketley JM, Konkel ME. (editors) Campylobacter: Molecular and Cellular Biology Wymondham, UK: Horizon Bioscience; 2005 pp. 13–42
    [Google Scholar]
  6. Vandamme P, van Doorn LJ, Al Rashid ST, Quint WG, van der Plas J et al. Campylobacter hyoilei Alderton et al. 1995 and Campylobacter coli Véron and Chatelain 1973 are subjective synonyms. Int J Syst Bacteriol 1997; 47:1055–1060 [View Article][PubMed]
    [Google Scholar]
  7. Vandamme P, Harrington CS, Jalava K, On SLW. Misidentifying helicobacters: the Helicobacter cinaedi example. J Clin Microbiol 2000; 38:2261–2266[PubMed]
    [Google Scholar]
  8. Vandamme P, On SLW. Recommendations of the subcommittee on the taxonomy of Campylobacter and related Bacteria. Int J Syst Evol Microbiol 2001; 51:719–721 [View Article][PubMed]
    [Google Scholar]
  9. Suerbaum S, Kraft C, Dewhirst FE, Fox JG. Helicobacter nemestrinae ATCC 49396T is a strain of Helicobacter pylori (Marshall et al. 1985) Goodwin et al. 1989, and Helicobacter nemestrinae Bronsdon et al. 1991 is therefore a junior heterotypic synonym of Helicobacter pylori . Int J Syst Evol Microbiol 2002; 52:437–439 [View Article][PubMed]
    [Google Scholar]
  10. Miller WG, On SLW. International committee on systematics of prokaryotes. subcommittee on the taxonomy of campylobacter and related bacteria: minutes of the closed meeting, 2 September 2009, Niigata, Japan. Int J Syst Evol Microbiol 2011; 61:2559–2560 [View Article][PubMed]
    [Google Scholar]
  11. On SLW. International Committee on Systematic Bacteriology Subcommittee on the taxonomy of Campylobacter and related Bacteria: minutes of the meeting 31st July 2002, Paris, Fance. Int J Syst Evol Microbiol 2004:291–292
    [Google Scholar]
  12. On SLW, Owen RJ. International committee on systematics of prokaryotes; subcommittee on the taxonomy of campylobacter and related bacteria: minutes of the meetings, 3 and 4 September 2007, Rotterdam, Holland. Int J Syst Evol Microbiol 2009:197–199
    [Google Scholar]
  13. Ursing JB, Lior H, Owen RJ. Proposal of minimal standards for describing new species of the family Campylobacteraceae . Int J Syst Bacteriol 1994; 44:842–845 [View Article][PubMed]
    [Google Scholar]
  14. Dewhirst FE, Fox JG, On SLW. Recommended minimal standards for describing new species of the genus Helicobacter . Int J Syst Evol Microbiol 2000; 50:2231–2237 [View Article][PubMed]
    [Google Scholar]
  15. Zhang Y, Sievert SM. Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria . Front Microbiol 2014; 5:110 [View Article][PubMed]
    [Google Scholar]
  16. Sasi Jyothsna TS, Rahul K, Ramaprasad EV, Sasikala C, Ramana C. Arcobacter anaerophilus sp. nov., isolated from an estuarine sediment and emended description of the genus Arcobacter . Int J Syst Evol Microbiol 2013; 63:4619–4625 [View Article][PubMed]
    [Google Scholar]
  17. On SLW, Holmes B, Sackin MJ. A probability matrix for the identification of campylobacters, helicobacters and allied taxa. J Appl Bacteriol 1996; 81:425–432[PubMed]
    [Google Scholar]
  18. Hugh R, Leifson E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 1953; 66:24–26[PubMed]
    [Google Scholar]
  19. Dewhirst FE, Seymour C, Fraser GJ, Paster BJ, Fox JG. Phylogeny of Helicobacter isolates from bird and swine feces and description of Helicobacter pametensis sp. nov. Int J Syst Bacteriol 1994; 44:553–560 [View Article][PubMed]
    [Google Scholar]
  20. Gill J, Haydon TG, Rawdon TG, Mcfadden AM, Ha HJ et al. Helicobacter bilis and Helicobacter trogontum: infectious causes of abortion in sheep. J Vet Diagn Invest 2016; 28:225–234 [View Article][PubMed]
    [Google Scholar]
  21. Paster BJ, Dewhirst FE. Phylogeny of Campylobacters, Wolinellas, Bacteroides gracilis, and Bacteroides ureolyticus by 16S ribosomal ribonucleic acid sequencing. Int J Syst Bacteriol 1988; 38:56–62 [View Article]
    [Google Scholar]
  22. Miller WG, Yee E, Jolley KA, Chapman MH. Use of an improved atpA amplification and sequencing method to identify members of the Campylobacteraceae and Helicobacteraceae . Lett Appl Microbiol 2014; 58:582–590 [View Article][PubMed]
    [Google Scholar]
  23. Korczak BM, Stieber R, Emler S, Burnens AP, Frey J et al. Genetic relatedness within the genus Campylobacter inferred from rpoB sequences. Int J Syst Evol Microbiol 2006; 56:937–945 [View Article][PubMed]
    [Google Scholar]
  24. Kärenlampi RI, Tolvanen TP, Hänninen ML. Phylogenetic analysis and PCR-restriction fragment length polymorphism identification of Campylobacter species based on partial groEL gene sequences. J Clin Microbiol 2004; 42:5731–5738 [View Article][PubMed]
    [Google Scholar]
  25. Megraud F, Bonnet F, Garnier M, Lamouliatte H. Characterization of "Campylobacter pyloridis" by culture, enzymatic profile, and protein content. J Clin Microbiol 1985; 22:1007–1010[PubMed]
    [Google Scholar]
  26. On SLW, Holmes B. Effect of inoculum size on the phenotypic characterisation of Campylobacter spp. J Clin Micro 1991a; 29:923–926
    [Google Scholar]
  27. On SLW, Holmes B. Reproducibility of tolerance tests that are useful in the identification of campylobacteria. J Clin Microbiol 1991; 29:1785–1788[PubMed]
    [Google Scholar]
  28. On SLW, Holmes B. Assessment of enzyme detection tests useful in identification of campylobacteria. J Clin Microbiol 1992; 30:746–749[PubMed]
    [Google Scholar]
  29. On SLW, Holmes B. Classification and identification of campylobacters, helicobacters and allied taxa by numerical analysis of phenotypic characters. System Appl Microbiol 1995; 18:374–390 [Crossref]
    [Google Scholar]
  30. Alispahic M, Hummel K, Jandreski-Cvetkovic D, Nöbauer K, Razzazi-Fazeli E et al. Species-specific identification and differentiation of Arcobacter, helicobacter and Campylobacter by full-spectral matrix-associated laser desorption/ionization time of flight mass spectrometry analysis. J Med Microbiol 2010; 59:295–301 [View Article][PubMed]
    [Google Scholar]
  31. Fitzgerald C, Tu ZC, Patrick M, Stiles T, Lawson AJ et al. Campylobacter fetus subsp. testudinum subsp. nov., isolated from humans and reptiles. Int J Syst Evol Microbiol 2014; 64:2944–2948 [View Article][PubMed]
    [Google Scholar]
  32. Levican A, Rubio-Arcos S, Martinez-Murcia A, Collado L, Figueras MJ. Arcobacter ebronensis sp. nov. and Arcobacter aquimarinus sp. nov., two new species isolated from marine environment. Syst Appl Microbiol 2015; 38:30–35 [View Article][PubMed]
    [Google Scholar]
  33. Mandrell RE, Harden LA, Bates A, Miller WG, Haddon WF et al. Speciation of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 2005; 71:6292–6307 [View Article][PubMed]
    [Google Scholar]
  34. Bessède E, Solecki O, Sifré E, Labadi L, Mégraud F. Identification of Campylobacter species and related organisms by matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Clin Microbiol Infect 2011; 17:1735–1739 [View Article][PubMed]
    [Google Scholar]
  35. Murray RG, Schleifer KH. Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes. Int J Syst Bacteriol 1994; 44:174–176 [View Article][PubMed]
    [Google Scholar]
  36. Murray RG, Stackebrandt E. Taxonomic note: implementation of the provisional status candidatus for incompletely described procaryotes. Int J Syst Bacteriol 1995; 45:186–187 [View Article][PubMed]
    [Google Scholar]
  37. Lawson AJ, Linton D, Stanley J. 16s rRNA gene sequences of 'Candidatus Campylobacter hominis', a novel uncultivated species, are found in the gastrointestinal tract of healthy humans. Microbiology 1998; 144:2063–2071 [View Article][PubMed]
    [Google Scholar]
  38. Cook GT. A plate test for Nitrate Reduction. J Clin Pathol 1950; 3:359–362 [View Article][PubMed]
    [Google Scholar]
  39. Owen RJ, Martin SR, Borman P. Rapid urea hydrolysis by gastric campylobacters. Lancet 1985; 1:111 [View Article][PubMed]
    [Google Scholar]
  40. Itoh T, Yanagawa Y, Shingaki M, Takahashi M, Kai A et al. Isolation of Campylobacter pyloridis from human gastric mucosa and characterization of the isolates. Microbiol Immunol 1987; 31:603–614 [View Article][PubMed]
    [Google Scholar]
  41. Skirrow MB, Benjamin J. Differentiation of enteropathogenic campylobacter. J Clin Pathol 1980; 33:1122 [View Article][PubMed]
    [Google Scholar]
  42. van den Bulck K, Decostere A, Baele M, Vandamme P, Mast J et al. Helicobacter cynogastricus sp. nov., isolated from the canine gastric mucosa. Int J Syst Evol Microbiol 2006; 56:1559–1564 [View Article][PubMed]
    [Google Scholar]
  43. Hawrylik SJ, Wasilko DJ, Haskell SL, Gootz TD, Lee SE. Bisulfite or sulfite inhibits growth of Helicobacter pylori . J Clin Microbiol 1994; 32:790–792[PubMed]
    [Google Scholar]
  44. Fox JG, Yan LL, Dewhirst FE, Paster BJ, Shames B et al. Helicobacter bilis sp. nov., a novel Helicobacter species isolated from bile, livers, and intestines of aged, inbred mice. J Clin Microbiol 1995; 33:445–454[PubMed]
    [Google Scholar]
  45. Harrington CS, On SLW. Extensive 16S rRNA gene sequence diversity in Campylobacter hyointestinalis strains: taxonomic and applied implications. Int J Syst Bacteriol 1999; 49:1171–1175 [View Article][PubMed]
    [Google Scholar]
  46. Hänninen ML, Kärenlampi RI, Koort JM, Mikkonen T, Björkroth KJ. Extension of the species Helicobacter bilis to include the reference strains of Helicobacter sp. flexispira taxa 2, 3 and 8 and finnish canine and feline flexispira strains. Int J Syst Evol Microbiol 2005; 55:891–898 [View Article][PubMed]
    [Google Scholar]
  47. Hänninen ML, Utriainen M, Happonen I, Dewhirst FE. Helicobacter sp. flexispira 16S rDNA taxa 1, 4 and 5 and finnish porcine Helicobacter isolates are members of the species Helicobacter trogontum (taxon 6). Int J Syst Evol Microbiol 2003; 53:425–433 [View Article][PubMed]
    [Google Scholar]
  48. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015; 38:237–245 [View Article][PubMed]
    [Google Scholar]
  49. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C et al. Ribosomal multilocus sequence typing: universal characterization of Bacteria from domain to strain. Microbiology 2012; 158:1005–1015 [View Article][PubMed]
    [Google Scholar]
  50. Levican A, Collado L, Figueras MJ. Arcobacter cloacae sp. nov. and Arcobacter suis sp. nov., two new species isolated from food and sewage. Syst Appl Microbiol 2013; 36:22–27 [View Article][PubMed]
    [Google Scholar]
  51. Ankenbrand MJ, Keller A, Chain F. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome 2016; 59:783–791 [View Article][PubMed]
    [Google Scholar]
  52. Zhang Y, Qiu S. Phylogenomic analysis of the genus Ralstonia based on 686 single-copy genes. Antonie van Leeuwenhoek 2016; 109:71–82 [View Article][PubMed]
    [Google Scholar]
  53. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  54. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  55. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002; 52:1043–1047 [View Article][PubMed]
    [Google Scholar]
  56. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article][PubMed]
    [Google Scholar]
  57. Fox JG, Taylor NS, Edmonds P, Brenner DJ. Campylobacter pylori subsp. mustelae subsp. nov. isolated from the gastric mucosa of ferrets (Mustela putorius furo), and an emended description of Campylobacter pylori . Int J Syst Bacteriol 1988; 38:367–370 [View Article]
    [Google Scholar]
  58. Hänninen M-L, Happonen I, Saari S, Jalava K. Culture and characteristics of Helicobacter bizzozeronii, a new canine gastric Helicobacter sp. Int J Syst Bacteriol 46, 160-166.. Erratum in: Int J Syst Bacteriol 1996; 46:839 [Crossref]
    [Google Scholar]
  59. Owen RJ, Pitcher D. Current methods for estimating DNA base composition and levels of DNA–DNA hybridization. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London, UK: Academic Press; 1985 pp. 67–93
    [Google Scholar]
  60. Stanley J, Burnens AP, Linton D, On SL, Costas M et al. Campylobacter helveticus sp. nov., a new thermophilic species from domestic animals: characterization, and cloning of a species-specific DNA probe. J Gen Microbiol 1992; 138:2293–2303 [View Article][PubMed]
    [Google Scholar]
  61. Ezaki T, Takeuchi N, Liu SL, Kai A, Yamamoto H et al. Small-scale DNA preparation for rapid genetic identification of Campylobacter species without radioisotope. Microbiol Immunol 1988; 32:141–150 [View Article][PubMed]
    [Google Scholar]
  62. Fox JG, Chilvers T, Goodwin CS, Taylor NS, Edmonds P et al. Campylobacter mustelae, a new species resulting from the elevation of Campylobacter pylori subsp. mustelae to Species Status. Int J Syst Bacteriol 1989; 39:301–303 [View Article]
    [Google Scholar]
  63. On SLW, Harrington CS. Identification of taxonomic and epidemiological relationships among Campylobacter species by numerical analysis of AFLP profiles. FEMS Microbiol Lett 2000; 193:161–169[PubMed] [Crossref]
    [Google Scholar]
  64. On SLW, Harrington CS, Atabay HI. Differentiation of Arcobacter species by numerical analysis of AFLP profiles and description of a novel Arcobacter from pig abortions and Turkey faeces. J Appl Microbiol 2003; 95:1096–1105[PubMed] [Crossref]
    [Google Scholar]
  65. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  66. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  67. Steele TW, Owen RJ. NOTES: Campylobacter jejuni subsp. doylei subsp. nov., a subspecies of nitrate-negative campylobacters isolated from human clinical specimens. Int J Syst Bacteriol 1988; 38:316–318 [View Article]
    [Google Scholar]
  68. Debruyne L, On SLW, de Brandt E, Vandamme P. Novel Campylobacter lari-like bacteria from humans and molluscs: description of Campylobacter peloridis sp. nov., Campylobacter lari subsp. concheus subsp. nov. and Campylobacter lari subsp. lari subsp. nov. Int J Syst Evol Microbiol 2009; 59:1126–1132 [View Article][PubMed]
    [Google Scholar]
  69. On SLW, Bloch B, Holmes B, Hoste B, Vandamme P. Campylobacter hyointestinalis subsp. lawsonii subsp. nov., isolated from the porcine stomach, and an emended description of Campylobacter hyointestinalis . Int J Syst Bacteriol 1995; 45:767–774 [View Article][PubMed]
    [Google Scholar]
  70. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T et al. Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 2005; 3:733–739 [View Article][PubMed]
    [Google Scholar]
  71. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [View Article][PubMed]
    [Google Scholar]
  72. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article][PubMed]
    [Google Scholar]
  73. Rosselló-Móra R, Amann R. Past and future species definitions for bacteria and archaea. Syst Appl Microbiol 2015; 38:209–216 [View Article][PubMed]
    [Google Scholar]
  74. Collado L, Cleenwerck I, van Trappen S, de Vos P, Figueras MJ. Arcobacter mytili sp. nov., an indoxyl acetate-hydrolysis-negative bacterium isolated from mussels. Int J Syst Evol Microbiol 2009; 59:1391–1396 [View Article][PubMed]
    [Google Scholar]
  75. de Smet S, Vandamme P, De Zutter L, On SLW, Douidah L et al. Arcobacter trophiarum sp. nov., isolated from fattening pigs. Int J Syst Evol Microbiol 2011; 61:356–361 [View Article][PubMed]
    [Google Scholar]
  76. Donachie SP, Bowman JP, On SL, Alam M. Arcobacter halophilus sp. nov., the first obligate halophile in the genus Arcobacter . Int J Syst Evol Microbiol 2005; 55:1271–1277 [View Article][PubMed]
    [Google Scholar]
  77. Figueras MJ, Levican A, Collado L, Inza MI, Yustes C. Arcobacter ellisii sp. nov., isolated from mussels. Syst Appl Microbiol 2011; 34:414–418 [View Article][PubMed]
    [Google Scholar]
  78. Figueras MJ, Collado L, Levican A, Perez J, Solsona MJ et al. Arcobacter molluscorum sp. nov., a new species isolated from shellfish. Syst Appl Microbiol 2011; 34:105–109 [View Article][PubMed]
    [Google Scholar]
  79. Houf K, On SLW, Coenye T, Debruyne L, de Smet S et al. Arcobacter thereius sp. nov., isolated from pigs and ducks. Int J Syst Evol Microbiol 2009; 59:2599–2604 [View Article][PubMed]
    [Google Scholar]
  80. Houf K, On SLW, Coenye T, Mast J, van Hoof J et al. Arcobacter cibarius sp. nov., isolated from broiler carcasses. Int J Syst Evol Microbiol 2005; 55:713–717 [View Article][PubMed]
    [Google Scholar]
  81. Kiehlbauch JA, Brenner DJ, Nicholson MA, Baker CN, Patton CM et al. Campylobacter butzleri sp. nov. isolated from humans and animals with diarrheal illness. J Clin Microbiol 1991; 29:376–385[PubMed]
    [Google Scholar]
  82. Kim HM, Hwang CY, Cho BC. Arcobacter marinus sp. nov. Int J Syst Evol Microbiol 2010; 60:531–536 [View Article][PubMed]
    [Google Scholar]
  83. Levican A, Collado L, Aguilar C, Yustes C, Diéguez AL et al. Arcobacter bivalviorum sp. nov. and Arcobacter venerupis sp. nov., new species isolated from shellfish. Syst Appl Microbiol 2012; 35:133–138 [View Article][PubMed]
    [Google Scholar]
  84. Neill SD, Campbell JN, O'Brien JJ, Weatherup STC, Ellis WA. Taxonomic position of Campylobacter cryaerophila sp. nov. Int J Syst Bacteriol 1985; 35:342–356 [View Article]
    [Google Scholar]
  85. Mcclung CR, Patriquin DG, Davis RE. Campylobacter nitrofigilis sp. nov., a nitrogen-fixing bacterium associated with roots of Spartina alterniflora Loisel. Int J Syst Bacteriol 1983; 33:605–612 [View Article]
    [Google Scholar]
  86. Vandamme P, Vancanneyt M, Pot B, Mels L, Hoste B et al. Polyphasic taxonomic study of the emended genus Arcobacter with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an aerotolerant bacterium isolated from veterinary specimens. Int J Syst Bacteriol 1992; 42:344–356 [View Article][PubMed]
    [Google Scholar]
  87. Vandamme P, Falsen E, Rossau R, Hoste B, Segers P et al. Revision of Campylobacter, helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Bacteriol 1991; 41:88–103 [View Article][PubMed]
    [Google Scholar]
  88. Whiteduck-Léveillée K, Whiteduck-Léveillée J, Cloutier M, Tambong JT, Xu R et al. Arcobacter lanthieri sp. nov., isolated from pig and dairy cattle manure. Int J Syst Evol Microbiol 2015; 65:2709–2716 [View Article][PubMed]
    [Google Scholar]
  89. Benjamin J, Leaper S, Owen RJ, Skirrow MB. Description of Campylobacter laridis, a new species comprising the nalidixic acid resistant thermophilic Campylobacter (NARTC) group. Curr Microbiol 1983; 8:231–238 [View Article]
    [Google Scholar]
  90. Cáceres A, Muñoz I, Iraola G, Díaz-Viraqué F, Collado L. Campylobacter ornithocola sp. nov., a novel member of the Campylobacter lari group isolated from wild bird faecal samples. Int J Syst Evol Microbiol 2017; 67:1643–1649 [View Article][PubMed]
    [Google Scholar]
  91. Debruyne L, Broman T, Bergström S, Olsen B, On SLW et al. Campylobacter subantarcticus sp. nov., isolated from birds in the sub-Antarctic region. Int J Syst Evol Microbiol 2010; 60:815–819 [View Article][PubMed]
    [Google Scholar]
  92. Debruyne L, Broman T, Bergström S, Olsen B, On SL et al. Campylobacter volucris sp. nov., isolated from black-headed gulls (Larus ridibundus) . Int J Syst Evol Microbiol 2010; 60:1870–1875 [View Article][PubMed]
    [Google Scholar]
  93. Doyle LP. The etiology of swine dysentery. Am J Vet Res 1948; 9:50–51
    [Google Scholar]
  94. Florent A. Les deux vibrioses génitales: la vibriose due á V. fetus venerealis et la vibriose d’ origine intestinale due á V. fetus intestinalis . Meded Veeartsenijsch Rijksuniv Gent 1959; 3:1–60
    [Google Scholar]
  95. Foster G, Holmes B, Steigerwalt AG, Lawson PA, Thorne P et al. Campylobacter insulaenigrae sp. nov., isolated from marine mammals. Int J Syst Evol Microbiol 2004; 54:2369–2373.. Erratum in Int J Syst Evol Microbiol 2005; 55:981 [Crossref]
    [Google Scholar]
  96. Gebhart CJ, Edmonds P, Ward GE, Kurtz HJ, Brenner DJ. "Campylobacter hyointestinalis" sp. nov.: a new species of Campylobacter found in the intestines of pigs and other animals. J Clin Microbiol 1985; 21:715–720[PubMed]
    [Google Scholar]
  97. Gilbert MJ, Kik M, Miller WG, Duim B, Wagenaar JA. Campylobacter iguaniorum sp. nov., isolated from reptiles. Int J Syst Evol Microbiol 2015; 65:975–982 [View Article][PubMed]
    [Google Scholar]
  98. Gilbert MJ, Miller WG, Leger JS, Chapman MH, Timmerman AJ et al. Campylobacter pinnipediorum sp. nov., isolated from pinnipeds, comprising Campylobacter pinnipediorum subsp. pinnipediorum subsp. nov. and Campylobacter pinnipediorum subsp. caledonicus subsp. nov. Int J Syst Evol Microbiol 2017; 67:1961–1968 [View Article][PubMed]
    [Google Scholar]
  99. Inglis GD, Hoar BM, Whiteside DP, Morck DW. Campylobacter canadensis sp. nov., from captive whooping cranes in Canada. Int J Syst Evol Microbiol 2007; 57:2636–2644 [View Article][PubMed]
    [Google Scholar]
  100. Jackson FL, Goodman YE. Bacteroides ureolyticus, a new species to accommodate strains previously identified as "Bacteroides corrodens, Anaerobic". Int J Syst Bacteriol 1978; 28:197–200 [View Article]
    [Google Scholar]
  101. Jones FS, Orcutt M, Little RB. Vibrios (Vibrio jejuni, n. sp.) associated with intestinal disorders of cows and calves. J Exp Med 1931; 53:853–863 [View Article][PubMed]
    [Google Scholar]
  102. Koziel M, O'Doherty P, Vandamme P, Corcoran GD, Sleator RD et al. Campylobacter corcagiensis sp. nov., isolated from faeces of captive lion-tailed macaques (Macaca silenus). Int J Syst Evol Microbiol 2014; 64:2878–2883 [View Article][PubMed]
    [Google Scholar]
  103. Lawson AJ, On SLW, Logan JM, Stanley J. Campylobacter hominis sp. nov., from the human gastrointestinal tract. Int J Syst Evol Microbiol 2001; 51:651–660 [View Article][PubMed]
    [Google Scholar]
  104. Lawson GH, Rowland AC. Intestinal adenomatosis in the pig: a bacteriological study. Res Vet Sci 1974; 17:331–336[PubMed]
    [Google Scholar]
  105. Lawson GHK, Leaver JL, Pettigrew GW, Rowland AC. Some features of Campylobacter sputorum subsp. mucosalis subsp. nov., nom. rev. and their taxonomic significance. Int J Syst Bacteriol 1981; 31:385–391 [View Article]
    [Google Scholar]
  106. Logan JM, Burnens A, Linton D, Lawson AJ, Stanley J. Campylobacter lanienae sp. nov., a new species isolated from workers in an abattoir. Int J Syst Evol Microbiol 2000; 50:865–872 [View Article][PubMed]
    [Google Scholar]
  107. On SLW, Atabay HI, Corry JE, Harrington CS, Vandamme P. Emended description of Campylobacter sputorum and revision of its infrasubspecific (biovar) divisions, including C. sputorum biovar paraureolyticus, a urease-producing variant from cattle and humans. Int J Syst Bacteriol 1998; 48:195–206 [View Article][PubMed]
    [Google Scholar]
  108. Prévot AR. Études de systématique bactérienne. V. Essai de classification des vibrions anaérobies. Ann Inst Pasteur 1940; 64:117–125
    [Google Scholar]
  109. Roop RM, Smibert RM, Johnson JL, Krieg NR. Campylobacter mucosalis (Lawson, Leaver, Pettigrew, and Rowland 1981) comb. nov.: emended description. Int J Syst Bacteriol 1985; 35:189–192 [View Article]
    [Google Scholar]
  110. Rossi M, Debruyne L, Zanoni RG, Manfreda G, Revez J et al. Campylobacter avium sp. nov., a hippurate-positive species isolated from poultry. Int J Syst Evol Microbiol 2009; 59:2364–2369 [View Article][PubMed]
    [Google Scholar]
  111. Sandstedt K, Ursing J. Description of Campylobacter upsaliensis sp. nov. previously known as the CNW Group. Syst Appl Microbiol 1991; 14:39–45 [View Article]
    [Google Scholar]
  112. Smith T, Taylor MS. Some morphological and biological characters of the spirilla (Vibrio fetus, N. sp.) associated with disease of the fetal membranes in cattle. J Exp Med 1919; 30:299–311 [View Article]
    [Google Scholar]
  113. Vandamme P, Debruyne L, de Brandt E, Falsen E. Reclassification of Bacteroides ureolyticus as Campylobacter ureolyticus comb. nov., and emended description of the genus Campylobacter . Int J Syst Evol Microbiol 2010; 60:2016–2022 [View Article][PubMed]
    [Google Scholar]
  114. Vandamme P, Daneshvar MI, Dewhirst FE, Paster BJ, Kersters K et al. Chemotaxonomic analyses of Bacteroides gracilis and Bacteroides ureolyticus and reclassification of B. gracilis as Campylobacter gracilis comb. nov. Int J Syst Bacteriol 1995; 45:145–152 [View Article][PubMed]
    [Google Scholar]
  115. Veron M, Chatelain R. Taxonomic study of the genus Campylobacter sebald and Veron and designation of the neotype strain for the type species, Campylobacter fetus (Smith and Taylor) Sebald and Veron. Int J Syst Bacteriol 1973; 23:122–134 [View Article]
    [Google Scholar]
  116. van TT, Elshagmani E, Gor MC, Scott PC, Moore RJ. Campylobacter hepaticus sp. nov., isolated from chickens with spotty liver disease. Int J Syst Evol Microbiol 2016; 66:4518–4524 [View Article][PubMed]
    [Google Scholar]
  117. von Graevenitz A. Revised nomenclature of Campylobacter laridis, Enterobacter intermedium, and "Flavobacterium branchiophila". Int J Syst Bacteriol 1990; 40:211 [View Article][PubMed]
    [Google Scholar]
  118. Tanner ACR, Badger S, Lai C-H, Listgarten MA, Visconti RA et al. Wolinella gen. nov., Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb. nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., and Eikenella corrodens from humans with periodontal disease. Int J Syst Bacteriol 1981; 31:432–445 [View Article]
    [Google Scholar]
  119. Tanner ACR, Listgarten MA, Ebersole JL. Wolinella curva sp. nov.: "Vibrio succinogenes" of human origin. Int J Syst Bacteriol 1984; 34:275–282 [View Article]
    [Google Scholar]
  120. Zanoni RG, Debruyne L, Rossi M, Revez J, Vandamme P. Campylobacter cuniculorum sp. nov., from rabbits. Int J Syst Evol Microbiol 2009; 59:1666–1671 [View Article][PubMed]
    [Google Scholar]
  121. Baele M, Decostere A, Vandamme P, Ceelen L, Hellemans A et al. Isolation and characterization of Helicobacter suis sp. nov. from pig stomachs. Int J Syst Evol Microbiol 2008; 58:1350–1358 [View Article][PubMed]
    [Google Scholar]
  122. Baele M, Decostere A, Vandamme P, van den Bulck K, Gruntar I et al. Helicobacter baculiformis sp. nov., isolated from feline stomach mucosa. Int J Syst Evol Microbiol 2008; 58:357–364 [View Article][PubMed]
    [Google Scholar]
  123. Eaton KA, Dewhirst FE, Radin MJ, Fox JG, Paster BJ et al. Helicobacter acinonyx sp. nov., isolated from cheetahs with gastritis. Int J Syst Bacteriol 1993; 43:99–106 [View Article][PubMed]
    [Google Scholar]
  124. Fox JG, Boutin SR, Handt LK, Taylor NS, Xu S et al. Isolation and characterization of a novel Helicobacter species, "Helicobacter macacae," from rhesus monkeys with and without chronic idiopathic colitis. J Clin Microbiol 2007; 45:4061–4063 [View Article][PubMed]
    [Google Scholar]
  125. Fox JG, Chien CC, Dewhirst FE, Paster BJ, Shen Z et al. Helicobacter canadensis sp. nov. isolated from humans with diarrhea as an example of an emerging pathogen. J Clin Microbiol 2000; 38:2546–2549[PubMed]
    [Google Scholar]
  126. Fox JG, Dewhirst FE, Tully JG, Paster BJ, Yan L et al. Helicobacter hepaticus sp. nov., a microaerophilic bacterium isolated from livers and intestinal mucosal scrapings from mice. J Clin Microbiol 1994; 32:1238–1245[PubMed]
    [Google Scholar]
  127. Fox JG, Shen Z, Xu S, Feng Y, Dangler CA et al. Helicobacter marmotae sp. nov. isolated from livers of woodchucks and intestines of cats. J Clin Microbiol 2002; 40:2513–2519 [View Article][PubMed]
    [Google Scholar]
  128. Fox JG, Taylor NS, Howe S, Tidd M, Xu S et al. Helicobacter anseris sp. nov. and Helicobacter brantae sp. nov., isolated from feces of resident Canada geese in the greater Boston area. Appl Environ Microbiol 2006; 72:4633–4637 [View Article][PubMed]
    [Google Scholar]
  129. Franklin CL, Beckwith CS, Livingston RS, Riley LK, Gibson SV et al. Isolation of a novel Helicobacter species, Helicobacter cholecystus sp. nov., from the gallbladders of Syrian hamsters with cholangiofibrosis and centrilobular pancreatitis. J Clin Microbiol 1996; 34:2952–2958[PubMed]
    [Google Scholar]
  130. Franklin CL, Gorelick PL, Riley LK, Dewhirst FE, Livingston RS et al. Helicobacter typhlonius sp. nov., a novel murine urease-negative Helicobacter species. J Clin Microbiol 2001; 39:3920–3926 [View Article][PubMed]
    [Google Scholar]
  131. Harper CG, Feng Y, Xu S, Taylor NS, Kinsel M et al. Helicobacter cetorum sp. nov., a urease-positive Helicobacter species isolated from dolphins and whales. J Clin Microbiol 2002; 40:4536–4543 [View Article][PubMed]
    [Google Scholar]
  132. Hu S, Jin D, Lu S, Liu S, Zhang J et al. Helicobacter himalayensis sp. nov. isolated from gastric mucosa of Marmota himalayana . Int J Syst Evol Microbiol 2015; 65:1719–1725 [View Article][PubMed]
    [Google Scholar]
  133. Jalava K, Kaartinen M, Utriainen M, Happonen I, Hänninen ML. Helicobacter salomonis sp. nov., a canine gastric Helicobacter sp. related to Helicobacter felis and Helicobacter bizzozeronii. Int J Syst Bacteriol 1997; 47:975–982 [View Article][PubMed]
    [Google Scholar]
  134. Jalava K, On SLW, Vandamme PA, Happonen I, Sukura A et al. Isolation and identification of Helicobacter spp. from canine and feline gastric mucosa. Appl Environ Microbiol 1998; 64:3998–4006[PubMed]
    [Google Scholar]
  135. Lee A, Phillips MW, O'Rourke JL, Paster BJ, Dewhirst FE et al. Helicobacter muridarum sp. nov., a microaerophilic helical bacterium with a novel ultrastructure isolated from the intestinal mucosa of rodents. Int J Syst Bacteriol 1992; 42:27–36 [View Article][PubMed]
    [Google Scholar]
  136. Marshall BJ, Royce H, Annear DI, Goodwin CS, Pearman JW et al. Original isolation of Campylobacter pyloridis from human gastric mucosa. Microbios Letters 1984; 25:83–88
    [Google Scholar]
  137. Marshall BJ, Goodwin CS. Notes: revised nomenclature of Campylobacter pyloridis . Int J Syst Bacteriol 1987; 37:68 [View Article]
    [Google Scholar]
  138. Mendes EN, Queiroz DM, Dewhirst FE, Paster BJ, Moura SB et al. Helicobacter trogontum sp. nov., isolated from the rat intestine. Int J Syst Bacteriol 1996; 46:916–921 [View Article][PubMed]
    [Google Scholar]
  139. Moyaert H, Decostere A, Vandamme P, Debruyne L, Mast J et al. Helicobacter equorum sp. nov., a urease-negative Helicobacter species isolated from horse faeces. Int J Syst Evol Microbiol 2007; 57:213–218 [View Article][PubMed]
    [Google Scholar]
  140. Paster BJ, Lee A, Fox JG, Dewhirst FE, Tordoff LA et al. Phylogeny of Helicobacter felis sp. nov., Helicobacter mustelae, and related bacteria. Int J Syst Bacteriol 1991; 41:31–38 [View Article][PubMed]
    [Google Scholar]
  141. Patterson MM, Schrenzel MD, Feng Y, Xu S, Dewhirst FE et al. Helicobacter aurati sp. nov., a urease-positive Helicobacter species cultured from gastrointestinal tissues of syrian hamsters. J Clin Microbiol 2000; 38:3722–3728[PubMed]
    [Google Scholar]
  142. Robertson BR, O'Rourke JL, Vandamme P, On SLW, Lee A. Helicobacter ganmani sp. nov., a urease-negative anaerobe isolated from the intestines of laboratory mice. Int J Syst Evol Microbiol 2001; 51:1881–1889 [View Article][PubMed]
    [Google Scholar]
  143. Shen Z, Fox JG, Dewhirst FE, Paster BJ, Foltz CJ et al. Helicobacter rodentium sp. nov., a urease-negative Helicobacter species isolated from laboratory mice. Int J Syst Bacteriol 1997; 47:627–634 [View Article][PubMed]
    [Google Scholar]
  144. Shen Z, Xu S, Dewhirst FE, Paster BJ, Pena JA et al. A novel enterohepatic Helicobacter species 'Helicobacter mastomyrinus' isolated from the liver and intestine of rodents. Helicobacter 2005; 10:59–70 [View Article][PubMed]
    [Google Scholar]
  145. Shen Z, Feng Y, Sheh A, Everitt J, Bertram F et al. Isolation and characterization of a novel Helicobacter species, Helicobacter jaachi sp. nov., from common marmosets (Callithrix jaachus). J Med Microbiol 2015; 64:1063–1073 [View Article][PubMed]
    [Google Scholar]
  146. Shen Z, Feng Y, Muthupalani S, Sheh A, Cheaney LE et al. Novel Helicobacter species H.japonicum isolated from laboratory mice from Japan induces typhlocolitis and lower bowel carcinoma in C57BL/129 IL10−/−mice. Carcinogenesis 2016; 37:1190–1198 [View Article][PubMed]
    [Google Scholar]
  147. Shen Z, Mannion A, Whary MT, Muthupalani S, Sheh A et al. Helicobacter saguini, a Novel Helicobacter isolated from cotton-top tamarins with ulcerative colitis, has proinflammatory properties and induces typhlocolitis and dysplasia in Gnotobiotic IL-10−/− Mice. Infect Immun 2016; 84:2307–2316 [View Article][PubMed]
    [Google Scholar]
  148. Simmons JH, Riley LK, Besch-Williford CL, Franklin CL. Helicobacter mesocricetorum sp. nov., a novel Helicobacter isolated from the feces of Syrian hamsters. J Clin Microbiol 2000; 38:1811–1817[PubMed]
    [Google Scholar]
  149. Smet A, Flahou B, D'Herde K, Vandamme P, Cleenwerck I et al. Helicobacter heilmannii sp. nov., isolated from feline gastric mucosa. Int J Syst Evol Microbiol 2012; 62:299– 306. Erratum in Int J Syst Evol Microbiol 2012; 62:1016 [Crossref]
    [Google Scholar]
  150. Stanley J, Linton D, Burnens AP, Dewhirst FE, On SL et al. Helicobacter pullorum sp. nov.-genotype and phenotype of a new species isolated from poultry and from human patients with gastroenteritis. Microbiology 1994; 140:3441–3449 [View Article][PubMed]
    [Google Scholar]
  151. Stanley J, Linton D, Burnens AP, Dewhirst FE, Owen RJ et al. Helicobacter canis sp. nov., a new species from dogs: an integrated study of phenotype and genotype. J Gen Microbiol 1993; 139:2495–2504 [View Article][PubMed]
    [Google Scholar]
  152. Totten PA, Fennell CL, Tenover FC, Wezenberg JM, Perine PL et al. Campylobacter cinaedi (sp. nov.) and Campylobacter fennelliae (sp. nov.): two new Campylobacter species associated with enteric disease in homosexual men. J Infect Dis 1985; 151:131–139 [View Article][PubMed]
    [Google Scholar]
  153. Truper HG, De'clari L. Taxonomic note: necessary correction of specific epithets formed as substantives (Nouns) "in Apposition". Int J Syst Bacteriol 1997; 47:908–909 [View Article]
    [Google Scholar]
  154. Wolin MJ, Wolin EA, Jacobs NJ. Cytochrome-producing anaerobic vibrio,Vibrio succinogenes, sp. nov. J Bacteriol 1961; 81:911–917[PubMed]
    [Google Scholar]
  155. Miller WG, Chapman MH, Yee E, On SLW, Mcnulty DK et al. Multilocus sequence typing methods for the emerging Campylobacter species C. hyointestinalis, C. lanienae, C. sputorum, C. concisus, and C. curvus . Front Cell Infect Microbiol 2012; 2:45 [View Article][PubMed]
    [Google Scholar]
  156. Miller WG, On SLW, Wang G, Fontanoz S, Lastovica AJ et al. Extended multilocus sequence typing system for Campylobacter coli, C. lari, C. upsaliensis, and C. helveticus . J Clin Microbiol 2005; 43:2315–2329 [View Article][PubMed]
    [Google Scholar]
  157. van Bergen MA, Dingle KE, Maiden MC, Newell DG, van der Graaf-van Bloois L et al. Clonal nature of Campylobacter fetus as defined by multilocus sequence typing. J Clin Microbiol 2005; 43:5888–5898 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.002255
Loading
/content/journal/ijsem/10.1099/ijsem.0.002255
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error