sp. nov., isolated from Antarctic tundra soil Free

Abstract

Strain 200, isolated from a soil sample taken from Antarctic tundra soil around Zhongshan Station, was found to be a Gram-stain-negative, yellow-pigmented, catalase-positive, oxidase-negative, non-motile, non-spore-forming, rod-shaped and aerobic bacterium. Strain 200 grew optimally at pH 7.0 and in the absence of NaCl on R2A. Its optimum growth temperature was 20 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 200 belonged to the genus . Strain 200 showed the highest sequence similarities to THG-DT81 (95.1 %) and KMM 3882 (95.1 %). Chemotaxonomic analysis showed that strain 200 had characteristics typical of members of the genus . Ubiquinone 10 was the predominant respiratory quinone and homospermidine was the polyamine. The major polar lipids were sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylcholine. The G+C content of the genomic DNA was determined to be 60.9 mol%. Strain 200 contained C (31.6 %), summed feature 8 (comprising Cω7 and/or Cω6, 22.7 %), summed feature 3 (comprising Cω7 and/or Cω6, 11.2 %), C (7.8 %) and C 2OH (6.7 %) as the major cellular fatty acids. On the basis of phylogenetic analysis, and physiological and biochemical characterization, strain 200 should be classified as representing a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 200 (=CCTCC AB 2016064=KCTC 52488).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002253
2017-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/4064.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002253&mimeType=html&fmt=ahah

References

  1. Kosako Y, Yabuuchi E, Naka T, Fujiwara N, Kobayashi K. Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. Microbiol Immunol 2000; 44:563–575 [View Article]
    [Google Scholar]
  2. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article][PubMed]
    [Google Scholar]
  3. Yabuuchi E, Yamamoto H, Terakubo S, Okamura N, Naka T et al. Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo-p-dioxin metabolizer. Int J Syst Evol Microbiol 2001; 51:281–292 [View Article][PubMed]
    [Google Scholar]
  4. Kämpfer P, Busse H-J, Rosséllo-Mora R, Kjellin E, Falsen E. Rhodovarius lipocyclicus gen. nov. sp. nov., a new genus of the α-1 subclass of the Proteobacteria. Syst Appl Microbiol 2004; 27:511–516 [View Article]
    [Google Scholar]
  5. Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ et al. Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 2012; 62:2835–2843 [View Article][PubMed]
    [Google Scholar]
  6. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  7. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 115–147
    [Google Scholar]
  8. Lin YC, Uemori K, de Briel DA, Arunpairojana V, Yokota A. Zimmermannella helvola gen. Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae. Int J Syst Evol Microbiol 2004; 54:1669–1676 [View Article][PubMed]
    [Google Scholar]
  9. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  10. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  11. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  12. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  13. Son HM, Kook M, Tran HT, Kim KY, Park SY et al. Sphingomonas kyeonggiense sp. nov., isolated from soil of a ginseng field. Antonie van Leeuwenhoek 2014; 105:791–797 [View Article][PubMed]
    [Google Scholar]
  14. Romanenko LA, Uchino M, Frolova GM, Tanaka N, Kalinovskaya NI et al. Sphingomonas molluscorum sp. nov., a novel marine isolate with antimicrobial activity. Int J Syst Evol Microbiol 2007; 57:358–363 [View Article][PubMed]
    [Google Scholar]
  15. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 5:1861–1868 [View Article][PubMed]
    [Google Scholar]
  16. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  17. Moore DD, Dowhan D. Preparation and analysis of DNA. In Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG. et al. (editors) Current Protocols in Molecular Biology New York: Wiley; 1995 pp. 2–11
    [Google Scholar]
  18. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  19. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  20. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003; 49:345–349 [View Article][PubMed]
    [Google Scholar]
  21. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  22. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  23. Kato M, Muto Y, Tanaka-Bandoh K, Watanabe K, Ueno K. Sphingolipid composition in Bacteroides species. Anaerobe 1995; 1:135–139 [View Article][PubMed]
    [Google Scholar]
  24. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  25. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the Family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47:698–708 [View Article]
    [Google Scholar]
  26. Kim M, Ren L, Zheng C, Zhang Y, Fang C et al. Sphingoaurantiacus polygranulatus gen. nov., sp. nov., isolated from high-Arctic tundra soil, and emended descriptions of the genera Sandarakinorhabdus, Polymorphobacter and Rhizorhabdus and the species Sandarakinorhabdus limnophila, Rhizorhabdus argentea and Sphingomonas wittichii. Int J Syst Systematic Microbiol 2016; 66:91–100 [View Article]
    [Google Scholar]
  27. Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ et al. Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 2012; 62:2835–2843 [View Article][PubMed]
    [Google Scholar]
  28. Zhang JY, Liu XY, Liu SJ. Sphingomonas changbaiensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2010; 60:790–795 [View Article][PubMed]
    [Google Scholar]
  29. Kim SJ, Moon JY, Lim JM, Ahn JH, Weon HY et al. Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. Int J Syst Evol Microbiol 2014; 64:926–932 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002253
Loading
/content/journal/ijsem/10.1099/ijsem.0.002253
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed