1887

Abstract

A Gram-stain-negative, rod-shaped, bacterial strain, B448-2, was isolated from an ice core from the Muztagh Glacier, on the Tibetan Plateau. B448-2 grew optimally at pH 7.0 and 20 °C in the presence of 0–1.0 % (w/v) NaCl. The results of 16S rRNA gene sequence similarity analysis indicated that B448-2 was closely related to Massilia eurypsychrophila CGMCC 1.12828, Rugamonas rubra CCM3730 and Duganella zoogloeoides JCM20729 at levels of 97.8, 97.7  and 97.3 %, respectively. The predominant fatty acids of B448-2 were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The predominant isoprenoid quinone was Q-8. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G+C content of the strain was 66.1 mol%. In DNA–DNA hybridization tests, B448-2 shared 37.6 % DNA–DNA relatedness with Massilia eurypsychrophila CGMCC 1.12828. On the basis of the results for phenotypic and chemotaxonomic characteristics, B448-2 was considered to represent a novel species of the genus Massilia , for which the name Massilia glaciei sp. nov. is proposed. The type strain is B448-2 (=JCM 30271=CGMCC 1.12920).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002252
2017-09-13
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/4075.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002252&mimeType=html&fmt=ahah

References

  1. La Scola B, Birtles RJ, Mallet MN, Raoult D. Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 1998;36:2847–2852[PubMed]
    [Google Scholar]
  2. Lee KB, Liu CT, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005;55:1907–1919 [CrossRef][PubMed]
    [Google Scholar]
  3. LPSN 2017; List of prokaryotic names with standing in nomenclature. www.bacterio.net/massilia.html
  4. Kämpfer P, Lodders N, Martin K, Falsen E. Revision of the genus Massilia La Scola et al. 2000, with an emended description of the genus and inclusion of all species of the genus Naxibacter as new combinations, and proposal of Massilia consociata sp. nov. Int J Syst Evol Microbiol 2011;61:1528–1533 [CrossRef][PubMed]
    [Google Scholar]
  5. Kämpfer P, Lodders N, Martin K, Falsen E. Massilia oculi sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 2012;62:364–369 [CrossRef][PubMed]
    [Google Scholar]
  6. Gallego V, Sánchez-Porro C, García MT, Ventosa A. Massilia aurea sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2006;56:2449–2453 [CrossRef][PubMed]
    [Google Scholar]
  7. Zhang YQ, Li WJ, Zhang KY, Tian XP, Jiang Y et al. Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int J Syst Evol Microbiol 2006;56:459–463 [CrossRef][PubMed]
    [Google Scholar]
  8. Zul D, Wanner G, Overmann J. Massilia brevitalea sp. nov., a novel betaproteobacterium isolated from lysimeter soil. Int J Syst Evol Microbiol 2008;58:1245–1251 [CrossRef][PubMed]
    [Google Scholar]
  9. Weon HY, Kim BY, Hong SB, Jeon YA, Koo BS et al. Massilia niabensis sp. nov. and Massilia niastensis sp. nov., isolated from air samples. Int J Syst Evol Microbiol 2009;59:1656–1660 [CrossRef][PubMed]
    [Google Scholar]
  10. Weon HY, Yoo SH, Kim SJ, Kim YS, Anandham R et al. Massilia jejuensis sp. nov. and Naxibacter suwonensis sp. nov., isolated from air samples. Int J Syst Evol Microbiol 2010;60:1938 [CrossRef][PubMed]
    [Google Scholar]
  11. Shen L, Liu Y, Wang N, Yao T, Jiao N et al. Massilia yuzhufengensis sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 2013;63:1285–1290 [CrossRef][PubMed]
    [Google Scholar]
  12. Shen L, Liu Y, Gu Z, Xu B, Wang N et al. Massilia eurypsychrophila sp. nov. a facultatively psychrophilic bacteria isolated from ice core. Int J Syst Evol Microbiol 2015;65:2124–2129 [CrossRef][PubMed]
    [Google Scholar]
  13. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985;49:1–7[PubMed]
    [Google Scholar]
  14. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–IN1 [CrossRef]
    [Google Scholar]
  15. Embley TM. The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 1991;13:171–174 [CrossRef][PubMed]
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  17. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  18. Microbial IDentification Inc (MIDI) 2017; Sherlock™ Microbial ID System: bacterial ID by fatty acid analysis. www.midi-inc.com/pages/microbial_id.html
  19. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  20. Hiraishi A, Ueda Y, Ishihara J. Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal. Appl Environ Microbiol 1998;64:992–998[PubMed]
    [Google Scholar]
  21. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  22. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  23. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002252
Loading
/content/journal/ijsem/10.1099/ijsem.0.002252
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error