1887

Abstract

A novel Sphingomonas strain was isolated from a sample of desert soil collected near Jeddah in Saudi Arabia. A polyphasic approach was performed to characterize this strain, initially designated as G39. Cells of strain G39 are motile, Gram-negative, catalase- and oxidase-positive. The strain is able to grow aerobically at 20–35 °C, pH 6.5–8 and tolerates up to 4 % (w/v) NaCl. Based on 16S rRNA gene sequence similarity, the closest relative type strains of G39 are Sphingomonas mucosissima DSM 17494 (98.6 %), S. dokdonensis DSM 21029 (98.4 %) and S. hankookensis DSM 23329 (97.4 %). Furthermore, the average nucleotide identities between the draft genome sequence of strain G39 and the genome sequences of all other available and related Sphingomonas species are significantly below the threshold of 94 %. The G+C content of the draft genome (3.12 Mbp) is 65.84 %. The prevalent (>5 %) cellular fatty acids of G39 were C18 : 1 ω7c, C16 : 1 ω7c and/or C16 : 1 ω6c, C14 : 0 2-OH and C16 : 0. The only detectable respiratory quinone was ubiquinone-10 and the polar lipids profile is composed of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, as well as unidentified lipids, phospholipids and glycolipids. The results of the conducted polyphasic approach confirmed that this isolate represents a novel species of the genus Sphingomonas , for which the name Sphingomonas jeddahensis sp. nov. is proposed. The type strain of this species is G39 (=DSM 103790=LMG 29955).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002249
2017-09-14
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/4057.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002249&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34: 99– 119 [CrossRef] [PubMed]
    [Google Scholar]
  2. Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ et al. Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 2012; 62: 2835– 2843 [CrossRef] [PubMed]
    [Google Scholar]
  3. Holmes B, Owen RJ, Evans A, Malnick H, Willcox WR. Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources. Int J Syst Bacteriol 1977; 27: 133– 146 [CrossRef]
    [Google Scholar]
  4. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51: 1405– 1417 [CrossRef] [PubMed]
    [Google Scholar]
  5. An DS, Liu QM, Lee HG, Jung MS, Kim SC et al. Sphingomonas ginsengisoli sp. nov. and Sphingomonas sediminicola sp. nov. Int J Syst Evol Microbiol 2013; 63: 496– 501 [CrossRef] [PubMed]
    [Google Scholar]
  6. Busse HJ, Denner EB, Buczolits S, Salkinoja-Salonen M, Bennasar A et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 2003; 53: 1253– 1260 [CrossRef] [PubMed]
    [Google Scholar]
  7. Feng GD, Yang SZ, Wang YH, Zhang XX, Zhao GZ et al. Description of a Gram-negative bacterium, Sphingomonas guangdongensis sp. nov. Int J Syst Evol Microbiol 2014; 64: 1697– 1702 [CrossRef] [PubMed]
    [Google Scholar]
  8. Jin XF, Kim JK, Liu QM, Kang MS, He D et al. Sphingomonas ginsenosidivorax sp. nov., with the ability to transform ginsenosides. Antonie van Leeuwenhoek 2013; 103: 1359– 1367 [CrossRef] [PubMed]
    [Google Scholar]
  9. Kaur J, Kaur J, Niharika N, Lal R. Sphingomonas laterariae sp. nov., isolated from a hexachlorocyclohexane-contaminated dump site. Int J Syst Evol Microbiol 2012; 62: 2891– 2896 [CrossRef] [PubMed]
    [Google Scholar]
  10. Lin SY, Shen FT, Lai WA, Zhu ZL, Chen WM et al. Sphingomonas formosensis sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 2012; 62: 1581– 1586 [CrossRef] [PubMed]
    [Google Scholar]
  11. Manandhar P, Zhang G, Hu Y, Lama A, Gao F et al. Sphingomonas prati sp. nov., isolated from alpine meadow soil of Tanggula mountain in Qinghai – Tibetan Plateau. Int J Syst Evol Microbiol 2016; 66: 4269– 4275 [Crossref]
    [Google Scholar]
  12. Wittich RM, Busse HJ, Kämpfer P, Macedo AJ, Tiirola M et al. Sphingomonas fennica sp. nov. and Sphingomonas haloaromaticamans sp. nov., outliers of the genus Sphingomonas. Int J Syst Evol Microbiol 2007; 57: 1740– 1746 [CrossRef] [PubMed]
    [Google Scholar]
  13. Zhu L, Si M, Li C, Xin K, Chen C et al. Sphingomonas gei sp. nov., isolated from roots of Geum aleppicum. Int J Syst Evol Microbiol 2015; 65: 1160– 1166 [CrossRef] [PubMed]
    [Google Scholar]
  14. Kim JH, Kim SH, Kim KH, Lee PC. Sphingomonas lacus sp. nov., an astaxanthin-dideoxyglycoside-producing species isolated from soil near a pond. Int J Syst Evol Microbiol 2015; 65: 2824– 2830 [CrossRef] [PubMed]
    [Google Scholar]
  15. Kim SJ, Moon JY, Lim JM, Ahn JH, Weon HY et al. Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. Int J Syst Evol Microbiol 2014; 64: 926– 932 [CrossRef] [PubMed]
    [Google Scholar]
  16. Denner EB, Paukner S, Kämpfer P, Moore ER, Abraham WR et al. Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 2001; 51: 827– 841 [CrossRef] [PubMed]
    [Google Scholar]
  17. Pollock TJ. Gellan-related polysaccharides and the genus Sphingomonas. J Gen Microbiol 1993; 139: 1939– 1945 [CrossRef]
    [Google Scholar]
  18. Lee PC, Schmidt-Dannert C. Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 2002; 60: 1– 11 [CrossRef] [PubMed]
    [Google Scholar]
  19. Schlegel HG, Kaltwasser H, Gottschalk G. Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 1961; 38: 209– 222 [CrossRef]
    [Google Scholar]
  20. Schau HP. Media for isolation – Cultivation – Identification – Maintenance of medical Bacteria, MacFaddin, J. F, Baltimore, London 1985. Williams and Wilkins. J Basic Microbiol 1986; 26: 240 [Crossref]
    [Google Scholar]
  21. Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P et al. Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 1994; 44: 427– 434 [CrossRef] [PubMed]
    [Google Scholar]
  22. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  23. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30: 2114– 2120 [CrossRef] [PubMed]
    [Google Scholar]
  24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19: 455– 477 [CrossRef] [PubMed]
    [Google Scholar]
  25. García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 2012; 28: 2678– 2679 [CrossRef] [PubMed]
    [Google Scholar]
  26. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30: 2068– 2069 [CrossRef] [PubMed]
    [Google Scholar]
  27. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403– 410 [CrossRef] [PubMed]
    [Google Scholar]
  28. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  29. Reddy GS, Garcia-Pichel F. Sphingomonas mucosissima sp. nov. and Sphingomonas desiccabilis sp. nov., from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 2007; 57: 1028– 1034 [CrossRef] [PubMed]
    [Google Scholar]
  30. Yoon JH, Lee MH, Kang SJ, Lee SY, Tk O et al. Sphingomonas dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2006; 56: 2165– 2169 [Crossref]
    [Google Scholar]
  31. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 24: 4876– 4882 [Crossref]
    [Google Scholar]
  32. Maidak BL, Olsen GJ, Larsen N, Overbeek R, Mccaughey MJ et al. The RDP (Ribosomal Database Project). Nucleic Acids Res 1997; 25: 109– 110 [CrossRef] [PubMed]
    [Google Scholar]
  33. Cole JR, Wang Q, Fish JA, Chai B, Mcgarrell DM et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42: D633– D642 [CrossRef] [PubMed]
    [Google Scholar]
  34. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  35. Page RD. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 1996; 12: 357– 358 [PubMed]
    [Google Scholar]
  36. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  37. Sourdis J, Nei M. Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree. Mol Biol Evol 1988; 5: 298– 311 [PubMed]
    [Google Scholar]
  38. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10: 1073– 1095 [PubMed]
    [Google Scholar]
  39. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  40. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  41. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32: 929– 931 [CrossRef] [PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195: 413– 418 [CrossRef] [PubMed]
    [Google Scholar]
  43. Poehlein A, Wübbeler JH, Daniel R, Steinbüchel A. Draft genome sequences of Sphingomonas mucosissima DSM 17494T and Sphingomonas dokdonensis DSM 21029T. Genome Announc 2017; 5: e00889 17
    [Google Scholar]
  44. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  45. Miller LT. A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 1982; 16: 584– 586
    [Google Scholar]
  46. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38: 358– 361 [CrossRef]
    [Google Scholar]
  47. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20: 16
    [Google Scholar]
  48. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13: 128– 130 [CrossRef]
    [Google Scholar]
  49. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66: 199– 202 [CrossRef]
    [Google Scholar]
  50. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: Snyder ASM Press; 2007; pp. 330– 393
    [Google Scholar]
  51. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10: 512– 526 [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002249
Loading
/content/journal/ijsem/10.1099/ijsem.0.002249
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error