1887

Abstract

A Gram-stain-negative, aerobic, yellow-pigmented, non-flagellated, non-gliding, rod-like, oxidase- and catalase-positive bacterium, designated A2-1, was isolated from soil on Ardley Island, South Shetland Islands, Antarctica. Strain A2-1 grew at 4–22 °C (optimum, 10 °C), at pH 6.0–8.0 (optimum, pH 6.5) and with 0–1.5 % NaCl (optimum, 0.5 %), but could not produce flexirubin-type pigments. 16S rRNA gene sequence analysis showed that the isolates belonged to the genus . Strain A2-1 had the highest 16S rRNA gene sequence similarity to , and with 95.7, 95.6 and 95.4 %, respectively. The strain A2-1 consisted of a clade with and and simultaneously formed a distinct phyletic lineage in the neighbour-joining phylogenetic tree. Polar lipids of the strain included phosphatidylethanolamine (PE), four unidentified aminolipids and one unidentified lipid. The strain A2-1 contained anteiso-C (20.2 %), iso-C (16.2 %) and C G (11.0 %) as the main fatty acids and the only respiratory quinone was menaquinone MK-6. The genomic DNA G+C content was 34.0 mol%. The polyphasic taxonomic study revealed that the strain A2-1 belongs to a novel species within the genus and the name sp. nov. is proposed. The type strain is A2-1 (=CCTCC AB 2017157=KCTC 52644).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002241
2017-10-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/3996.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002241&mimeType=html&fmt=ahah

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM et al. Bergey's Manual of Determinative Bacteriology Baltimore: Williams & Wilkins; 1923
    [Google Scholar]
  2. Hwang WM, Kim D, Kang K, Ahn TY. Flavobacterium eburneum sp. nov., isolated from reclaimed saline land soil. Int J Syst Evol Microbiol 2017;67:55–59 [CrossRef][PubMed]
    [Google Scholar]
  3. Zhang G, Xian W, Chu Q, Yang J, Liu W et al. Flavobacterium terriphilum sp. nov., isolated from soil. Int J Syst Evol Microbiol 2016;66:4276–4281 [CrossRef][PubMed]
    [Google Scholar]
  4. Suwannachart C, Rueangyotchanthana K, Srichuay S, Pheng S, Fungsin B et al. Flavobacterium tistrianum sp. nov., a gliding bacterium isolated from soil. Int J Syst Evol Microbiol 2016;66:2241–2246 [CrossRef][PubMed]
    [Google Scholar]
  5. Nguyen TM, Kim J. Flavobacterium fulvum sp. nov., Flavobacterium pedocola sp. nov. and Flavobacterium humicola sp. nov., three new members of the family Flavobacteriaceae, isolated from soil. Int J Syst Evol Microbiol 2016;66:3108–3118 [CrossRef][PubMed]
    [Google Scholar]
  6. Kim YJ, Kim SR, Nguyen NL, Yang DC. Flavobacterium ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2013;63:4289–4293 [CrossRef][PubMed]
    [Google Scholar]
  7. Lim CS, Oh YS, Lee JK, Park AR, Yoo JS et al. Flavobacterium chungbukense sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011;61:2734–2739 [CrossRef][PubMed]
    [Google Scholar]
  8. Liu H, Liu R, Yang SY, Gao WK, Zhang CX et al. Flavobacterium anhuiense sp. nov., isolated from field soil. Int J Syst Evol Microbiol 2008;58:756–760 [CrossRef][PubMed]
    [Google Scholar]
  9. Zhang Y, Jiang F, Chang X, Qiu X, Ren L et al. Flavobacterium collinsense sp. nov., isolated from a till sample of an Antarctic glacier. Int J Syst Evol Microbiol 2016;66:172–177 [CrossRef][PubMed]
    [Google Scholar]
  10. Kim JH, Choi BH, Jo M, Kim SC, Lee PC. Flavobacterium faecale sp. nov., an agarase-producing species isolated from stools of Antarctic penguins. Int J Syst Evol Microbiol 2014;64:2884–2890 [CrossRef][PubMed]
    [Google Scholar]
  11. Yi H, Chun J. Flavobacterium weaverense sp. nov. and Flavobacterium segetis sp. nov., novel psychrophiles isolated from the Antarctic. Int J Syst Evol Microbiol 2006;56:1239–1244 [CrossRef][PubMed]
    [Google Scholar]
  12. Yi H, Oh HM, Lee JH, Kim SJ, Chun J. Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the antarctic. Int J Syst Evol Microbiol 2005;55:637–641 [CrossRef][PubMed]
    [Google Scholar]
  13. van Trappen S, Vandecandelaere I, Mergaert J, Swings J. Flavobacterium fryxellicola sp. nov. and Flavobacterium psychrolimnae sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 2005;55:769–772 [CrossRef][PubMed]
    [Google Scholar]
  14. van Trappen S, Vandecandelaere I, Mergaert J, Swings J. Flavobacterium degerlachei sp. nov., Flavobacterium frigoris sp. nov. and Flavobacterium micromati sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 2004;54:85–92 [CrossRef][PubMed]
    [Google Scholar]
  15. van Trappen S, Mergaert J, Swings J. Flavobacterium gelidilacus sp. nov., isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 2003;53:1241–1245 [CrossRef][PubMed]
    [Google Scholar]
  16. Humphry DR, George A, Black GW, Cummings SP. Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol 2001;51:1235–1243 [CrossRef][PubMed]
    [Google Scholar]
  17. Ao L, Zeng XC, Nie Y, Mu Y, Zhou L et al. Flavobacterium arsenatis sp. nov., a novel arsenic-resistant bacterium from high-arsenic sediment. Int J Syst Evol Microbiol 2014;64:3369–3374 [CrossRef][PubMed]
    [Google Scholar]
  18. Lee K, Park SC, Yi H, Chun J. Flavobacterium limnosediminis sp. nov., isolated from sediment of a freshwater lake. Int J Syst Evol Microbiol 2013;63:4784–4789 [CrossRef][PubMed]
    [Google Scholar]
  19. Kaur I, Kaur C, Khan F, Mayilraj S. Flavobacterium rakeshii sp. nov., isolated from marine sediment, and emended description of Flavobacterium beibuense Fu et al. 2011. Int J Syst Evol Microbiol 2012;62:2897–2902 [CrossRef][PubMed]
    [Google Scholar]
  20. Fu Y, Tang X, Lai Q, Zhang C, Zhong H et al. Flavobacterium beibuense sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2011;61:205–209 [CrossRef][PubMed]
    [Google Scholar]
  21. Lee SH, Kim JM, Lee JR, Park W, Jeon CO. Flavobacterium fluvii sp. nov., isolated from stream sediment. Int J Syst Evol Microbiol 2010;60:353–357 [CrossRef][PubMed]
    [Google Scholar]
  22. Qu JH, Li HF, Yang JS, Yuan HL. Flavobacterium cheniae sp. nov., isolated from sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 2008;58:2186–2190 [CrossRef][PubMed]
    [Google Scholar]
  23. Park M, Joung Y, Nam GG, Kim S, Cho JC. Flavobacterium inkyongense sp. nov., isolated from an artificial freshwater pond. Int J Syst Evol Microbiol 2017;67:82–86 [CrossRef][PubMed]
    [Google Scholar]
  24. Sheu SY, Chen YL, Chen WM. Flavobacterium verecundum sp. nov., isolated from a freshwater river. Int J Syst Evol Microbiol 2016;66:3337–3344 [CrossRef][PubMed]
    [Google Scholar]
  25. Joung Y, Kang H, Kim H, Kim TS, Han JH et al. Flavobacterium paronense sp. nov., isolated from freshwater of an artificial vegetated island. Int J Syst Evol Microbiol 2016;66:365–370 [CrossRef][PubMed]
    [Google Scholar]
  26. Feng Q, Han L, Yuan X, Tan X, Gao Y et al. Flavobacterium procerum sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2015;65:2702–2708 [CrossRef][PubMed]
    [Google Scholar]
  27. Feng Q, Gao Y, Nogi Y, Tan X, Han L et al. Flavobacterium maotaiense sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2015;65:171–176 [CrossRef][PubMed]
    [Google Scholar]
  28. Kim H, Kang H, Joung Y, Joh K. Flavobacterium gyeonganense sp. nov., isolated from freshwater, and emended descriptions of Flavobacterium chungangense, Flavobacterium aquidurense, Flavobacterium tructae and Flavobacterium granuli. Int J Syst Evol Microbiol 2014;64:4173–4178 [CrossRef][PubMed]
    [Google Scholar]
  29. Kang JY, Chun J, Jahng KY. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013;63:1633–1638 [CrossRef][PubMed]
    [Google Scholar]
  30. Chun J, Kang JY, Jahng KY. Flavobacterium fontis sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2013;63:1653–1657 [CrossRef][PubMed]
    [Google Scholar]
  31. Bernardet JF, Bowman JP. The genus Flavobacterium. The Prokaryotes Springer; 2006; pp.481–531[Crossref]
    [Google Scholar]
  32. Goodfellow M, Stackebrandt E. Nucleic Acid Techniques in Bacterial Systematics John Willey; 1991
    [Google Scholar]
  33. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  34. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  35. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  36. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  37. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  38. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  39. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982;44:992–993[PubMed]
    [Google Scholar]
  40. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  41. Lin CY, Zhang XY, Liu A, Liu C, Song XY et al. Marivirga atlantica sp. nov., isolated from seawater and emended description of the genus Marivirga. Int J Syst Evol Microbiol 2015;65:1515–1519 [CrossRef][PubMed]
    [Google Scholar]
  42. Komagata K, Suzuki K-I. Lipid and cell-wall analysis in bacterial systematics. Methods in Microbiology 1988;19:161–207[Crossref]
    [Google Scholar]
  43. De Ley J. Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 1970;101:738–754[PubMed]
    [Google Scholar]
  44. Weon HY, Song MH, Son JA, Kim BY, Kwon SW et al. Flavobacterium terrae sp. nov. and Flavobacterium cucumis sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 2007;57:1594–1598 [CrossRef][PubMed]
    [Google Scholar]
  45. Nedashkovskaya OI, Balabanova LA, Zhukova NV, Kim SJ, Bakunina IY et al. Flavobacterium ahnfeltiae sp. nov., a new marine polysaccharide-degrading bacterium isolated from a Pacific red alga. Arch Microbiol 2014;196:745–752 [CrossRef][PubMed]
    [Google Scholar]
  46. Lee S, Weon HY, Kim SJ, Ahn TY. Flavobacterium koreense sp. nov., Flavobacterium chungnamense sp. nov., and Flavobacterium cheonanense sp. nov., isolated from a freshwater reservoir. J Microbiol 2011;49:387–392 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002241
Loading
/content/journal/ijsem/10.1099/ijsem.0.002241
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error