1887

Abstract

A bacterial strain designated CCM 8645 was isolated from a soil sample collected nearby a mummified seal carcass in the northern part of James Ross Island, Antarctica. The cells were short rods, Gram-stain-negative, non-motile, catalase and oxidase positive, and produced a red-pink pigment on R2A agar. A polyphasic taxonomic approach based on 16S rRNA gene sequencing, extensive biotyping using conventional tests and commercial identification kits and chemotaxonomic analyses were applied to clarify its taxonomic position. Phylogenetic analysis based on the 16S rRNA gene placed strain CCM 8645 in the genus Mucilaginibacter with the closest relative being Mucilaginibacter daejeonensis Jip 10, exhibiting 96.5 % 16S rRNA pairwise similarity which was clearly below the 97 % threshold value recommended for species demarcation. The major components in fatty acid profiles were Summed feature 3 (C16 : 1 ω7c/C16  : 1 ω6c), C15 : 0 iso and C17 : 0 iso 3OH. The cellular quinone content was exclusively menaquinone MK-7. The major polyamine was sym-homospermidine and predominant polar lipids were phosphatidylethanolamine and phosphatidylserine. Based on presented results, we propose a novel species for which the name Mucilaginibacter terrae sp. nov. is suggested, with the type strain CCM 8645 (=LMG 29437).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002240
2017-09-14
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/4002.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002240&mimeType=html&fmt=ahah

References

  1. Lambiase A. The family Sphingobacteriaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. et al (editors) The Prokaryotes, 4 ed. Heidelberg, Germany: Springer; 2014; pp. 907– 9014
    [Google Scholar]
  2. Pankratov TA, Tindall BJ, Liesack W, Dedysh SN. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 2007; 57: 2349– 2354 [CrossRef] [PubMed]
    [Google Scholar]
  3. Urai M, Aizawa T, Nakagawa Y, Nakajima M, Sunairi M. Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int J Syst Evol Microbiol 2008; 58: 2046– 2050 [CrossRef] [PubMed]
    [Google Scholar]
  4. Baik KS, Park SC, Kim EM, Lim CH, Seong CN. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 2010; 60: 134– 139 [CrossRef] [PubMed]
    [Google Scholar]
  5. Chen XY, Zhao R, Tian Y, Kong BH, Li XD et al. Mucilaginibacter polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 2014; 64: 1395– 1400 [CrossRef] [PubMed]
    [Google Scholar]
  6. Joung Y, Kang H, Lee BI, Kim H, Joh K et al. Mucilaginibacter aquaedulcis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2015; 65: 698– 703 [CrossRef] [PubMed]
    [Google Scholar]
  7. Kämpfer P, Busse HJ, McInroy JA, Glaeser SP. Mucilaginibacter auburnensis sp. nov., isolated from a plant stem. Int J Syst Evol Microbiol 2014; 64: 1736– 1742 [CrossRef] [PubMed]
    [Google Scholar]
  8. Lee KC, Kim KK, Eom MK, Kim JS, Kim DS et al. Mucilaginibacter gotjawali sp. nov., isolated from soil of a lava forest. Int J Syst Evol Microbiol 2015; 65: 952– 958 [CrossRef] [PubMed]
    [Google Scholar]
  9. Hwang YM, Baik KS, Seong CN. Mucilaginibacter defluvii sp. nov., isolated from a dye wastewater treatment facility. Int J Syst Evol Microbiol 2014; 64: 565– 571 [CrossRef] [PubMed]
    [Google Scholar]
  10. Joung Y, Kim H, Kang H, Lee BI, Ahn TS et al. Mucilaginibacter soyangensis sp. nov., isolated from a lake. Int J Syst Evol Microbiol 2014; 64: 413– 419 [CrossRef] [PubMed]
    [Google Scholar]
  11. Joung Y, Kim H, Lee BI, Kang H, Kim TS et al. Mucilaginibacter flavus sp. nov., isolated from wetland. Int J Syst Evol Microbiol 2014; 64: 1304– 1309 [CrossRef] [PubMed]
    [Google Scholar]
  12. Park CS, Han K, Ahn TY. Mucilaginibacter koreensis sp. nov., isolated from leaf mould. Int J Syst Evol Microbiol 2014; 64: 2274– 2279 [CrossRef] [PubMed]
    [Google Scholar]
  13. Paiva G, Abreu P, Proença DN, Santos S, Nobre MF et al. Mucilaginibacter pineti sp. nov., isolated from Pinus pinaster wood from a mixed grove of pines trees. Int J Syst Evol Microbiol 2014; 64: 2223– 2228 [CrossRef] [PubMed]
    [Google Scholar]
  14. Han SI, Lee HJ, Lee HR, Kim KK, Whang KS. Mucilaginibacter polysacchareus sp. nov., an exopolysaccharide-producing bacterial species isolated from the rhizoplane of the herb Angelica sinensis. Int J Syst Evol Microbiol 2012; 62: 632– 637 [CrossRef] [PubMed]
    [Google Scholar]
  15. Madhaiyan M, Poonguzhali S, Lee JS, Senthilkumar M, Lee KC et al. Mucilaginibacter gossypii sp. nov. and Mucilaginibacter gossypiicola sp. nov., plant-growth-promoting bacteria isolated from cotton rhizosphere soils. Int J Syst Evol Microbiol 2010; 60: 2451– 2457 [CrossRef] [PubMed]
    [Google Scholar]
  16. Kim BC, Poo H, Lee KH, Kim MN, Kwon OY et al. Mucilaginibacter angelicae sp. nov., isolated from the rhizosphere of Angelica polymorpha Maxim. Int J Syst Evol Microbiol 2012; 62: 55– 60 [CrossRef] [PubMed]
    [Google Scholar]
  17. Jiang F, Dai J, Wang Y, Xue X, Xu M et al. Mucilaginibacter soli sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 2012; 62: 1630– 1635 [CrossRef] [PubMed]
    [Google Scholar]
  18. Kang SJ, Jung YT, Oh KH, Oh TK, Yoon JH. Mucilaginibacter boryungensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011; 61: 1549– 1553 [CrossRef] [PubMed]
    [Google Scholar]
  19. Yoon JH, Kang SJ, Park S, Oh TK. Mucilaginibacter litoreus sp. nov., isolated from marine sand. Int J Syst Evol Microbiol 2012; 62: 2822– 2827 [CrossRef] [PubMed]
    [Google Scholar]
  20. Nývlt D, Fišáková MN, Barták M, Stachoň Z, Pavel V et al. Death age, seasonality, taphonomy and colonization of seal carcasses from Ulu Peninsula, James Ross Island, Antarctic Peninsula. Antarct Sci 2016; 28: 3– 16 [CrossRef]
    [Google Scholar]
  21. Kýrová K, Sedláček I, Pantůček R, Králová S, Holochová P et al. Rufibacter ruber sp. nov., isolated from fragmentary rock. Int J Syst Evol Microbiol 2016; 66: 4401– 4405 [CrossRef] [PubMed]
    [Google Scholar]
  22. Jeon YS, Lee K, Park SC, Kim BS, Cho YJ et al. EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes. Int J Syst Evol Microbiol 2014; 64: 689– 691 [CrossRef] [PubMed]
    [Google Scholar]
  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  24. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10: 512– 526 [PubMed]
    [Google Scholar]
  25. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070 [CrossRef] [PubMed]
    [Google Scholar]
  26. Hugh R, Leifson E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 1953; 66: 24– 26 [PubMed]
    [Google Scholar]
  27. Brooks K, Sodeman T. A rapid method for determining decarboxylase and dihydrolase activity. J Clin Pathol 1974; 27: 148– 152 [CrossRef] [PubMed]
    [Google Scholar]
  28. Christensen WB. Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 1946; 52: 461– 466 [PubMed]
    [Google Scholar]
  29. Barrow GL, Cowan F. Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Great Britain: Cambridge University Press; 1993; [Crossref]
    [Google Scholar]
  30. Pácová Z, Kocur M. New medium for detection of esterase and gelatinase activity. Zentralbl Bakteriol Mikrobiol Hyg A 1984; 258: 69– 73 [PubMed]
    [Google Scholar]
  31. Kurup VP, Babcock JB. Use of casein, tyrosine, and hypoxanthine in the identification of nonfermentative gram-negative bacilli. Med Microbiol Immunol 1979; 167: 71– 75 [CrossRef] [PubMed]
    [Google Scholar]
  32. Owens JJ. The egg yolk reaction produced by several species of bacteria. J Appl Bacteriol 1974; 37: 137– 148 [CrossRef] [PubMed]
    [Google Scholar]
  33. Lowe GH. The rapid detection of lactose fermentation in paracolon organisms by the demonstration of β-d-galactosidase. J Med Lab Technol 1962; 19: 21– 25 [PubMed]
    [Google Scholar]
  34. Oberhofer TR, Rowen JW. Acetamide Agar for differentiation of nonfermentative bacteria. Appl Microbiol 1974; 28: 720– 721 [PubMed]
    [Google Scholar]
  35. Ewing WH. Enterobacteriaceae. Biochemical Methods for Group Differentation Atlanta: Public Health Service Publication No 734 CDC; 1960
    [Google Scholar]
  36. Da X, Fang C, Deng S, Zhang Y, Chang X et al. Pedobacter ardleyensis sp. nov., isolated from soil in Antarctica. Int J Syst Evol Microbiol 2015; 65: 3841– 3846 [CrossRef]
    [Google Scholar]
  37. EUCAST European Committee on Antimicrobial Susceptibility Testing. EUCAST Clinical Breakpoints - Bacteria 2015; version 5.0; http://www.eucast.org
    [Google Scholar]
  38. CLSI Performance Standards for Antimicrobial susceptibility testing; Twenty-Fifth Informational Supplement (M100-S25). Vol. 35 No. 3 Wayne, PA: Clinical and Laboratory Standards Institute; 2015
    [Google Scholar]
  39. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: Microbial ID, Inc.; 1990
    [Google Scholar]
  40. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47: 39– 52 [CrossRef]
    [Google Scholar]
  41. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57: 572– 576 [CrossRef] [PubMed]
    [Google Scholar]
  42. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66: 199– 202 [CrossRef]
    [Google Scholar]
  43. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13: 128– 130 [CrossRef]
    [Google Scholar]
  44. Kato M, Muto Y, Tanaka-Bandoh K, Watanabe K, Ueno K. Sphingolipid composition in Bacteroides species. Anaerobe 1995; 1: 135– 139 [CrossRef] [PubMed]
    [Google Scholar]
  45. Kang CH, Jung YT, Yoon JH. Mucilaginibacter sabulilitoris sp. nov., isolated from marine sand in a firth. Int J Syst Evol Microbiol 2013; 63: 2865– 2871 [CrossRef] [PubMed]
    [Google Scholar]
  46. Aydogan EL, Busse HJ, Moser G, Müller C, Kämpfer P et al. Proposal of Mucilaginibacter galii sp. nov. isolated from leaves of Galium album. Int J Syst Evol Microbiol 2017; 67: 1318– 1326 [CrossRef] [PubMed]
    [Google Scholar]
  47. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11: 1– 8 [CrossRef]
    [Google Scholar]
  48. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47: 698– 708 [CrossRef]
    [Google Scholar]
  49. An DS, Yin CR, Lee ST, Cho CH. Mucilaginibacter daejeonensis sp. nov., isolated from dried rice straw. Int J Syst Evol Microbiol 2009; 59: 1122– 1125 [CrossRef] [PubMed]
    [Google Scholar]
  50. Kim JH, Kang SJ, Jung YT, Oh TK, Yoon JH. Mucilaginibacter lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2012; 62: 515– 519 [CrossRef] [PubMed]
    [Google Scholar]
  51. Khan H, Chung EJ, Kang DY, Jeon CO, Chung YR. Mucilaginibacter jinjuensis sp. nov., with xylan-degrading activity. Int J Syst Evol Microbiol 2013; 63: 1267– 1272 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002240
Loading
/content/journal/ijsem/10.1099/ijsem.0.002240
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error