1887

Abstract

A Gram-stain-negative, aerobic, non-motile and ovoid or rod-shaped bacterial strain, designated OITF-22, was isolated from a tidal flat of Oido, an island of South Korea, and subjected to a polyphasic taxonomic study. Strain OITF-22 grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0–3.0 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences showed that strain OITF-22 fell within the clade comprising the type strains of species. Strain OITF-22 exhibited 16S rRNA gene sequence similarity values of 97.2–99.4 % to the type strains of , , , , , and , and of 93.0–96.9 % to the type strains of the other species. Strain OITF-22 contained MK-6 as the predominant menaquinone and iso-C and iso-C 3-OH as the major fatty acids. The major polar lipids detected in strain OITF-22 were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content of strain OITF-22 was 32.3 mol% and its DNA–DNA relatedness values with the type strains of the eight phylogenetically most closely related species were 9–32 %. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain OITF-22 is separated from recognized species of the genus . On the basis of the data presented, strain OITF-22 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is OITF-22 (=KCTC 52658=NBRC 112706).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002236
2017-10-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/4013.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002236&mimeType=html&fmt=ahah

References

  1. Gosink JJ, Woese CR, Staley JT. Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of 'Flectobacillus glomeratus' as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 1998;48:223–235 [CrossRef][PubMed]
    [Google Scholar]
  2. Mcguire AJ, Franzmann PD, Mcmeekin TA. Flectobacillus glomeratus sp. nov., a curved, nonmotile, pigmented bacterium isolated from Antarctic marine environments. Syst Appl Microbiol 1987;9:265–272 [CrossRef]
    [Google Scholar]
  3. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  4. Wang Y, Gao L, Ming H, Zhang P, Zhu W et al. Polaribacter marinaquae sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016;66:4594–4599 [CrossRef][PubMed]
    [Google Scholar]
  5. Kim YO, Park IS, Park S, Nam BH, Park JM et al. Polaribacter haliotis sp. nov., isolated from the gut of abalone Haliotis discus hannai. Int J Syst Evol Microbiol 2016;66:5562–5567 [CrossRef][PubMed]
    [Google Scholar]
  6. Kim E, Shin SK, Choi S, Yi H. Polaribacter vadi sp. nov., isolated from a marine gastropod. Int J Syst Evol Microbiol 2017;67:144–147 [CrossRef][PubMed]
    [Google Scholar]
  7. Kang H, Kim H, Joung Y, Joh K. Polaribacter lacunae sp. nov., isolated from a lagoon. Int J Syst Evol Microbiol 2016;67:681–686 [CrossRef][PubMed]
    [Google Scholar]
  8. Park S, Yoon SY, Ha MJ, Yoon JH. Polaribacter litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017;67:2036–2042 [CrossRef][PubMed]
    [Google Scholar]
  9. Nedashkovskaya OI, Kim SB, Lysenko AM, Kalinovskaya NI, Mikhailov VV et al. Polaribacter butkevichii sp. nov., a novel marine mesophilic bacterium of the family Flavobacteriaceae. Curr Microbiol 2005;51:408–412 [CrossRef][PubMed]
    [Google Scholar]
  10. Yoon JH, Kang SJ, Oh TK. Polaribacter dokdonensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2006;56:1251–1255 [CrossRef][PubMed]
    [Google Scholar]
  11. Lee YS, Lee DH, Kahng HY, Sohn SH, Jung JS. Polaribacter gangjinensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011;61:1425–1429 [CrossRef][PubMed]
    [Google Scholar]
  12. Fukui Y, Abe M, Kobayashi M, Saito H, Oikawa H et al. Polaribacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis, and emended descriptions of the genus Polaribacter and two Polaribacter species. Int J Syst Evol Microbiol 2013;63:1665–1672 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim BC, Oh HW, Kim H, Park DS, Hong SG et al. Polaribacter sejongensis sp. nov., isolated from Antarctic soil, and emended descriptions of the genus Polaribacter, Polaribacter butkevichii and Polaribacter irgensii. Int J Syst Evol Microbiol 2013;63:4000–4005 [CrossRef][PubMed]
    [Google Scholar]
  14. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV. Polaribacter reichenbachii sp. nov.: a new marine bacterium associated with the green alga Ulva fenestrata. Curr Microbiol 2013;66:16–21 [CrossRef][PubMed]
    [Google Scholar]
  15. Hyun DW, Shin NR, Kim MS, Kim PS, Jung MJ et al. Polaribacter atrinae sp. nov., isolated from the intestine of a comb pen shell, Atrina pectinata. Int J Syst Evol Microbiol 2014;64:1654–1661 [CrossRef][PubMed]
    [Google Scholar]
  16. Li H, Zhang XY, Liu C, Lin CY, Xu Z et al. Polaribacter huanghezhanensis sp. nov., isolated from Arctic fjord sediment, and emended description of the genus Polaribacter. Int J Syst Evol Microbiol 2014;64:973–978 [CrossRef][PubMed]
    [Google Scholar]
  17. Park S, Park JM, Jung YT, Lee KC, Lee JS et al. Polaribacter marinivivus sp. nov., a member of the family Flavobacteriaceae isolated from seawater. Antonie van Leeuwenhoek 2014;106:1139–1146 [CrossRef][PubMed]
    [Google Scholar]
  18. Park S, Park JM, Jung YT, Lee KH, Yoon JH. Polaribacter undariae sp. nov., isolated from a brown alga reservoir. Int J Syst Evol Microbiol 2015;65:1679–1685 [CrossRef][PubMed]
    [Google Scholar]
  19. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014;64:2969–2974 [CrossRef][PubMed]
    [Google Scholar]
  20. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  21. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:1–67
    [Google Scholar]
  22. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993;[Crossref]
    [Google Scholar]
  23. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001;51:1997–2006 [CrossRef][PubMed]
    [Google Scholar]
  24. Reichenbach H. The order Cytophagales. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. (editors) The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. New York: Springer; 1992; pp.3631–3675
    [Google Scholar]
  25. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  26. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963;85:1183–1184[PubMed]
    [Google Scholar]
  27. Yoon J-H, Kim H, Kim S-B, Kim H-J, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996;46:502–505 [CrossRef]
    [Google Scholar]
  28. Yoon J-H, Lee ST, Kim S-B, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-Amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997;47:111–114 [CrossRef]
    [Google Scholar]
  29. Yoon JH, Kim IG, Shin DY, Kang KH, Park YH. Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 2003;53:53–57 [CrossRef][PubMed]
    [Google Scholar]
  30. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  31. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[Crossref]
    [Google Scholar]
  32. Bernardet JF. Family I. Flavobacteriaceae Reichenbach 1992. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ. et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 4 New York: Springer; 2011; pp.106–111
    [Google Scholar]
  33. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  34. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  35. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994; pp.121–161
    [Google Scholar]
  36. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  37. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  38. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  39. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013;63:4386–4395 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002236
Loading
/content/journal/ijsem/10.1099/ijsem.0.002236
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error