1887

Abstract

A novel chemo-organoheterotrophic bacterium, strain CB-286403, was isolated from a Mediterranean forest soil, collected at Sierra de Tejeda, Almijara and Alhama Natural Park, Spain, by using the Diffusion Sandwich System, a device with 384 miniature diffusion chambers. The 16S rRNA gene sequence analyses identified the isolate as a member of the genus where the type strains A4T-83 (GenBank acc. no. AB331895), EBTL01 (JQ319003), DR4-30 (JN630810) and A5J-41-2 (AB331893) were the closest relatives with similarities of 97.0, 96.3, 96.3 and 94.5 %, respectively. The novel isolate was characterized as a Gram-stain-negative, non-motile, short-rod-shaped bacterium. The strain showed a positive response for catalase and cytochrome- oxidase, divided by binary fission and/or budding, and exhibited an aerobic metabolism. Strain CB-286403 showed a mesophilic and neutrophilic growth range and showed a nutritional preference for simple sugars and complex protein substrates. Major fatty acids included iso-C, C, Cω7c/iso-C 2-OH and anteiso-C. The predominant respiratory quinone was MK-9. Polar lipids comprised major amounts of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol and minor amounts of three unidentified lipids, a glycolipid, a phospholipid and a phosphoglycolipid. Based on a polyphasic taxonomic characterization, strain CB-286403 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CB-286403 (=DSM 28998=CECT 8659).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002227
2017-10-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/3951.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002227&mimeType=html&fmt=ahah

References

  1. Yoon J, Matsuo Y, Adachi K, Nozawa M, Matsuda S et al. Description of Persicirhabdus sediminis gen. nov., sp. nov., Roseibacillus ishigakijimensis gen. nov., sp. nov., Roseibacillus ponti sp. nov., Roseibacillus persicicus sp. nov., Luteolibacter pohnpeiensis gen. nov., sp. nov. and Luteolibacter algae sp. nov., six marine members of the phylum 'Verrucomicrobia', and emended descriptions of the class Verrucomicrobiae, the order Verrucomicrobiales and the family Verrucomicrobiaceae. Int J Syst Evol Microbiol 2008;58:998–1007 [CrossRef][PubMed]
    [Google Scholar]
  2. Glaeser SP, Galatis H, Martin K, Kämpfer P. Luteolibacter cuticulihirudinis sp. nov., isolated from hirudo medicinalis. Antonie van Leeuwenhoek 2012;102:319–324 [CrossRef][PubMed]
    [Google Scholar]
  3. Jiang F, Li W, Xiao M, Dai J, Kan W et al. Luteolibacter luojiensis sp. nov., isolated from Arctic tundra soil, and emended description of the genus Luteolibacter. Int J Syst Evol Microbiol 2012;62:2259–2263 [CrossRef][PubMed]
    [Google Scholar]
  4. Park J, Baek GS, Woo SG, Lee J, Yang J et al. Luteolibacter yonseiensis sp. nov., isolated from activated sludge using algal metabolites. Int J Syst Evol Microbiol 2013;63:1891–1895 [CrossRef][PubMed]
    [Google Scholar]
  5. Kim M, Pak S, Rim S, Ren L, Jiang F et al. Luteolibacter arcticus sp. nov., isolated from high Arctic tundra soil, and emended description of the genus Luteolibacter. Int J Syst Evol Microbiol 2015;65:1922–1928 [CrossRef][PubMed]
    [Google Scholar]
  6. Zhang C, Dong B, Wang R, Su Y, Han S et al. Luteolibacter flavescens sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2017;67:729–735 [CrossRef][PubMed]
    [Google Scholar]
  7. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I et al. A new antibiotic kills pathogens without detectable resistance. Nature 2015;517:455–459 [CrossRef][PubMed]
    [Google Scholar]
  8. Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A et al. Use of ichip for high-throughput in situ cultivation of "uncultivable" microbial species. Appl Environ Microbiol 2010;76:2445–2450 [CrossRef][PubMed]
    [Google Scholar]
  9. Pascual J, García-López M, Bills GF, Genilloud O. Longimicrobium terrae gen. nov., sp. nov., an oligotrophic bacterium of the under-represented phylum gemmatimonadetes isolated through a system of miniaturized diffusion chambers. Int J Syst Evol Microbiol 2016;66:1976–1985 [CrossRef][PubMed]
    [Google Scholar]
  10. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995;61:3756–3758[PubMed]
    [Google Scholar]
  11. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936;31:575–580[PubMed]
    [Google Scholar]
  12. Salim SM, Mandal J, Parija SC. Isolation of Campylobacter from human stool samples. Indian J Med Microbiol 2014;32:35–38 [CrossRef][PubMed]
    [Google Scholar]
  13. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note #101. Newark, DE: MIDI Inc.; 1990
    [Google Scholar]
  14. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  15. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.330–393
    [Google Scholar]
  16. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316–354[PubMed]
    [Google Scholar]
  17. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  18. Pascual J, Macián MC, Arahal DR, Garay E, Pujalte MJ. Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. Int J Syst Evol Microbiol 2010;60:154–165 [CrossRef][PubMed]
    [Google Scholar]
  19. Pascual J, Blanco S, García-López M, García-Salamanca A, Bursakov SA et al. Assessing bacterial diversity in the rhizosphere of Thymus zygis growing in the Sierra Nevada National Park (Spain) through culture-dependent and independent approaches. PLoS One 2016;11:e0146558 [CrossRef][PubMed]
    [Google Scholar]
  20. Munoz R, Yarza P, Ludwig W, Euzéby J, Amann R et al. The All-Species Living Tree (Release LTPs111). Syst Appl Microbiol 2011;34:169–170[Crossref]
    [Google Scholar]
  21. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41:D590–D596 [CrossRef][PubMed]
    [Google Scholar]
  22. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  23. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  24. Swofford DL. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), 42 Version 4.0b10. Sunderland, MA: Sinauer Associates; 2002
    [Google Scholar]
  25. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012;9:772 [CrossRef][PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  27. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  28. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  29. Urdiain M, López-López A, Gonzalo C, Busse HJ, Langer S et al. Reclassification of Rhodobium marinum and Rhodobium pfennigii as Afifella marina gen. nov. comb. nov. and Afifella pfennigii comb. nov., a new genus of photoheterotrophic Alphaproteobacteria and emended descriptions of Rhodobium, Rhodobium orientis and Rhodobium gokarnense. Syst Appl Microbiol 2008;31:339–351 [CrossRef][PubMed]
    [Google Scholar]
  30. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002227
Loading
/content/journal/ijsem/10.1099/ijsem.0.002227
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error