1887

Abstract

Metagenome analysis of coastal marine habitats of Gujarat, India indicated the presence of twelve novel putative lineages of spirochaetes. Out of which a strain designated JC444 representing a novel putative lineage seven was isolated and characterized based on a polyphasic taxonomic approach. Strain JC444 was helical, Gram-stain-negative, obligate anaerobe, catalase and oxidase negative. Strain JC444 was able to grow at 15–45 °C (optimum at 30–35 °C), pH 6.5–8.6 (optimum at 7.5–8.0) and 0.6–5 % (optimum at 1.5–2.0 %) of NaCl concentration. The major end products of glucose fermentation were acetate, formate, hydrogen and carbon dioxide. C14 : 0, iso-C15 : 0, C16 : 0, C18 : 0, iso-C15 : 1H/C13 : 03OH (summed feature 1), iso-C13 : 0, anteiso-C15 : 0 and iso-C17 : 0 were present as fatty acids. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and unidentified lipids (L1-4) were the polar lipids. G+C mol% of strain JC444 was 53.6 %. 16S rRNA gene sequence comparisons indicated that strain JC444 represents a member of the family Spirochaetaceae in the order Spirochaetales . Strain JC444 has a sequence similarity of 97.1 % with ‘Candidatus Marispirochaeta associata’ JC231 and <90.1 % with other members of the family Spirochaetaceae . Distinct morphological, physiological and genotypic differences from the previously described taxa support the classification of strain JC444 as a representative of a new genus and species in the family Spirochaetaceae , for which the name Marispirochaeta aestuarii gen. nov., sp. nov. is proposed. Type strain is JC444 (=KCTC 15554=DSM 103365).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002224
2017-10-12
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/3929.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002224&mimeType=html&fmt=ahah

References

  1. Aksenova HY, Rainey FA, Janssen PH, Zavarzin GA, Morgan HW. Spirochaeta thermophila sp. nov., an obligately anaerobic, polysaccharolytic, extremely thermophilic bacterium. Int J Syst Bacteriol 1992; 42: 175– 177 [CrossRef]
    [Google Scholar]
  2. Breznak JA, Canale-Parola E. Morphology and physiology of Spirochaeta aurantia strains isolated from aquatic habitats. Arch Microbiol 1975; 105: 1– 12 [CrossRef] [PubMed]
    [Google Scholar]
  3. Breznak JA, Warnecke F. Spirochaeta cellobiosiphila sp. nov., a facultatively anaerobic, marine spirochaete. Int J Syst Evol Microbiol 2008; 58: 2762– 2768 [CrossRef] [PubMed]
    [Google Scholar]
  4. Campbell BJ, Cary SC. Characterization of a novel spirochete associated with the hydrothermal vent polychaete annelid, Alvinella pompejana. Appl Environ Microbiol 2001; 67: 110– 117 [CrossRef] [PubMed]
    [Google Scholar]
  5. Canale-Parola E. Genus I. Spirochaeta. Ehrenberg 1835, 313AL. In Krieg NR, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 1 Baltimore: Williams & Wilkins; 1984; pp. 39– 46
    [Google Scholar]
  6. Canale-Parola E. Free-living saccharolytic spirochetes: the genus Spirochaeta. In Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H. et al (editors) The Prokaryotes New York: Springer-Verlag; 1992; pp. 3524– 3536 [Crossref]
    [Google Scholar]
  7. Greenberg EP, Canale-Parola E. Spirochaeta halophila sp. n., a facultative anaerobe from a high-salinity pond. Arch Microbiol 1976; 110: 185– 194 [CrossRef] [PubMed]
    [Google Scholar]
  8. Harwood CS, Canale-Parola E. Spirochaeta isovalerica sp. nov., a marine anaerobe that forms branched-chain fatty acids as fermentation products. Int J Syst Bacteriol 1983; 33: 573– 579 [CrossRef]
    [Google Scholar]
  9. Hespell RB, Canale-Parola E. Spirochaeta litoralis sp. n., a strictly anaerobic marine spirochete. Arch Microbiol 1970; 74: 1– 18 [CrossRef]
    [Google Scholar]
  10. Teal TH, Chapman M, Guillemette T, Margulis L. Free-living spirochetes from Cape Cod microbial mats detected by electron microscopy. Microbiologia 1996; 12: 571– 584 [PubMed]
    [Google Scholar]
  11. Miyazaki M, Sakai S, Yamanaka Y, Saito Y, Takai K et al. Spirochaeta psychrophila sp. nov., a psychrophilic spirochaete isolated from subseafloor sediment, and emended description of the genus Spirochaeta. Int J Syst Evol Microbiol 2014; 64: 2798– 2804 [CrossRef] [PubMed]
    [Google Scholar]
  12. Pikuta EV, Hoover RB, Bej AK, Marsic D, Whitman WB et al. Spirochaeta dissipatitropha sp. nov., an alkaliphilic, obligately anaerobic bacterium, and emended description of the genus Spirochaeta ehrenberg 1835. Int J Syst Evol Microbiol 2009; 59: 1798– 1804 [CrossRef] [PubMed]
    [Google Scholar]
  13. Pohlschroeder M, Leschine SB, Canale-Parola E. Spirochaeta caldaria sp. nov., a thermophilic bacterium that enhances cellulose degradation by Clostridium thermocellum. Arch Microbiol 1994; 161: 17– 24 [CrossRef]
    [Google Scholar]
  14. Imachi H, Sakai S, Hirayama H, Nakagawa S, Nunoura T et al. Exilispira thermophila gen. nov., sp. nov., an anaerobic, thermophilic spirochaete isolated from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 2008; 58: 2258– 2265 [CrossRef] [PubMed]
    [Google Scholar]
  15. Reddy SV, Aspana S, Tushar DL, Sasikala C, Ramana C. Spirochaeta sphaeroplastigenens sp. nov., a halo-alkaliphilic, obligately anaerobic spirochaete isolated from soda lake Lonar. Int J Syst Evol Microbiol 2013; 63: 2223– 2228 [CrossRef] [PubMed]
    [Google Scholar]
  16. Shivani Y, Subhash Y, Tushar L, Sasikala C, Ramana C. Spirochaeta lutea sp. nov., isolated from marine habitats and emended description of the genus Spirochaeta. Syst Appl Microbiol 2015; 38: 110– 114 [CrossRef] [PubMed]
    [Google Scholar]
  17. Shivani Y, Subhash Y, Sasikala C, Ramana CV. Description of 'Candidatus Marispirochaeta associata' and reclassification of Spirochaeta bajacaliforniensis, Spirochaeta smaragdinae and Spirochaeta sinaica to a new genus Sediminispirochaeta gen. nov. as Sediminispirochaeta bajacaliforniensis comb. nov., Sediminispirochaeta smaragdinae comb. nov. and Sediminispirochaeta sinaica comb. nov. Int J Syst Evol Microbiol 2016; 66: 5485– 5492 [CrossRef] [PubMed]
    [Google Scholar]
  18. Dubinina G, Grabovich M, Leshcheva N, Gronow S, Gavrish E et al. Spirochaeta sinaica sp. nov., a halophilic spirochaete isolated from a cyanobacterial mat. Int J Syst Evol Microbiol 2015; 65: 3872– 3877 [CrossRef] [PubMed]
    [Google Scholar]
  19. Fracek SP, Stolz JF. Spirochaeta bajacaliforniensis sp. n. from a microbial mat community at Laguna Figueroa, Baja California Norte, Mexico. Arch Microbiol 1985; 142: 317– 325 [CrossRef] [PubMed]
    [Google Scholar]
  20. Magot M, Fardeau ML, Arnauld O, Lanau C, Ollivier B et al. Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiol Lett 1997; 155: 185– 191 [CrossRef] [PubMed]
    [Google Scholar]
  21. Ben Hania W, Joseph M, Schumann P, Bunk B, Fiebig A et al. Complete genome sequence and description of Salinispira pacifica gen. nov., sp. nov., a novel spirochaete isolated form a hypersaline microbial mat. Stand Genomic Sci 2015; 10: 7 [CrossRef] [PubMed]
    [Google Scholar]
  22. Dröge S, Fröhlich J, Radek R, König H. Spirochaeta coccoides sp. nov., a novel coccoid spirochete from the hindgut of the termite Neotermes castaneus. Appl Environ Microbiol 2006; 72: 392– 397 [CrossRef] [PubMed]
    [Google Scholar]
  23. Dubinina G, Grabovich M, Leshcheva N, Rainey FA, Gavrish E. Spirochaeta perfilievii sp. nov., an oxygen-tolerant, sulfide-oxidizing, sulfur- and thiosulfate-reducing spirochaete isolated from a saline spring. Int J Syst Evol Microbiol 2011; 61: 110– 117 [CrossRef] [PubMed]
    [Google Scholar]
  24. Leschine SB, Paster BJ. Genus Spirochaeta. In Krieg NR, Staley JM, Brown DR, Hedlund BP, Paster BJ. et al (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 4 New York: Springer; 2010; pp. 473– 484
    [Google Scholar]
  25. Ritalahti KM, Justicia-Leon SD, Cusick KD, Ramos-Hernandez N, Rubin M et al. Sphaerochaeta globosa gen. nov., sp. nov. and Sphaerochaeta pleomorpha sp. nov., free-living, spherical spirochaetes. Int J Syst Evol Microbiol 2012; 62: 210– 216 [CrossRef] [PubMed]
    [Google Scholar]
  26. Troshina O, Oshurkova V, Suzina N, Machulin A, Ariskina E et al. Sphaerochaeta associata sp. nov., a spherical spirochaete isolated from cultures of Methanosarcina mazei JL01. Int J Syst Evol Microbiol 2015; 65: 4315– 4322 [CrossRef] [PubMed]
    [Google Scholar]
  27. Koelschbach JS, Mouttaki H, Pickl C, Heipieper HJ, Rachel R et al. Rectinema cohabitans gen. nov., sp. nov., a rod-shaped spirochaete isolated from an anaerobic naphthalene-degrading enrichment culture. Int J Syst Evol Microbiol 2017; 67: 1288– 1295 [CrossRef] [PubMed]
    [Google Scholar]
  28. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 2013; 79: 5112– 5120 [CrossRef] [PubMed]
    [Google Scholar]
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  31. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3: 208– 218 [CrossRef]
    [Google Scholar]
  32. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  33. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  34. Subhash Y, Sasikala C, Ramana C. Flavobacterium aquaticum sp. nov., isolated from a water sample of a rice field. Int J Syst Evol Microbiol 2013; 63: 3463– 3469 [CrossRef] [PubMed]
    [Google Scholar]
  35. Subhash Y, Tushar L, Sasikala C, Ramana C. Erythrobacter odishensis sp. nov. and Pontibacter odishensis sp. nov. isolated from dry soil of a solar saltern. Int J Syst Evol Microbiol 2013; 63: 4524– 4532 [CrossRef] [PubMed]
    [Google Scholar]
  36. Subhash Y, Tushar L, Sasikala C, Ramana C. Falsirhodobacter halotolerans gen. nov., sp. nov., isolated from dry soils of a solar saltern. Int J Syst Evol Microbiol 2013; 63: 2132– 2137 [CrossRef] [PubMed]
    [Google Scholar]
  37. Cappuccino JG, Sherman N. Microbiology – A Laboratory Manual, 5th ed. CA: Benjamin/Cummings Science Publishing; 1998
    [Google Scholar]
  38. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81– 91 [CrossRef] [PubMed]
    [Google Scholar]
  39. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2: 117– 134 [CrossRef] [PubMed]
    [Google Scholar]
  40. Seto H, Watanabe H, Furihata K. Simultaneous operation of the mevalonate and non-mevalonate pathways in the biosynthesis of isopentenly diphosphate in Streptomyces aeriouvifer. Tetrahedron Lett 1996; 37: 7979– 7982 [CrossRef]
    [Google Scholar]
  41. Stancu C, Sima A. Statins: mechanism of action and effects. J Cell Mol Med 2001; 5: 378– 387 [CrossRef] [PubMed]
    [Google Scholar]
  42. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  43. Umeda T, Tanaka N, Kusakabe Y, Nakanishi M, Kitade Y et al. Molecular basis of fosmidomycin's action on the human malaria parasite Plasmodium falciparum. Sci Rep 2011; 1: 1– 9 [CrossRef] [PubMed]
    [Google Scholar]
  44. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195: 413– 418 [CrossRef] [PubMed]
    [Google Scholar]
  45. Sravanthi T, Tushar L, Sasikala C, Ramana C. Alkalispirochaeta cellulosivorans gen. nov., sp. nov., a cellulose-hydrolysing, alkaliphilic, halotolerant bacterium isolated from the gut of a wood-eating cockroach (Cryptocercus punctulatus), and reclassification of four species of Spirochaeta as new combinations within Alkalispirochaeta gen. nov. Int J Syst Evol Microbiol 2016; 66: 1612– 1619 [CrossRef] [PubMed]
    [Google Scholar]
  46. Arroua B, Ranchou-Peyruse A, Ranchou-Peyruse M, Magot M, Urios L et al. Pleomorphochaeta caudata gen. nov., sp. nov., an anaerobic bacterium isolated from an offshore oil well, reclassification of Sphaerochaeta multiformis MO-SPC2T as Pleomorphochaeta multiformis MO-SPC2T comb. nov. as the type strain of this new genus and emended description of the genus Sphaerochaeta. Int J Syst Evol Microbiol 2017; 67: 417– 424 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002224
Loading
/content/journal/ijsem/10.1099/ijsem.0.002224
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error