1887

Abstract

The genus Halothiobacillus contains four species of obligate autotrophs with validly published names, of which Halothiobacillus halophilus and Halothiobacillus hydrothermalis are very distant from the type species – on the basis of the 16S rRNA gene, they have 90.7 % and 90.9 % identity to that of the type species, Halothiobacillus neapolitanus . As these values fall below the Yarza cut-off for the rank of genus, and these two species also show no clear affiliation to the closely related genus Thioalkalibacter , a polyphasic study was undertaken to determine if they represent a separate genus. Unlike Halothiobacillus spp. sensu stricto, H. halophilus and H. hydrothermalis are halophilic (rather than halotolerant) and moderately alkaliphilic (rather than neutrophilic) and additionally do not produce tetrathionate as a detectable intermediate of thiosulfate metabolism, indicating some significant metabolic differences. On the basis of these data and of functional gene examination, it is proposed that they be circumscribed as a new genus Guyparkeria gen.nov, for which the type species is Guyparkeria halophila gen. nov., comb. nov. Additionally, Thioalkalibacter and Guyparkeria gen. nov. fall distant from the Halothiobacillaceae so the Thioalkalibacteraceae fam. nov. is proposed, for which Thioalkalibacter is the type genus. Emended descriptions of Halothiobacillus , Halothiobacillus neapolitanus and the Halothiobacillaceae are provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002222
2017-09-08
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/3919.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002222&mimeType=html&fmt=ahah

References

  1. Sievert SM, Heidorn T, Kuever J. Halothiobacillus kellyi sp. nov., a mesophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a shallow-water hydrothermal vent in the Aegean Sea, and emended description of the genus Halothiobacillus. Int J Syst Evol Microbiol 2000; 50: 1229– 1237 [CrossRef] [PubMed]
    [Google Scholar]
  2. Kelly DP, Wood AP. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 2000; 50: 511– 516 [CrossRef] [PubMed]
    [Google Scholar]
  3. Parker CD. Genus V. Thiobacillus Beijerinck 1904. In Breed RS, Murray EGD, Smith NR. (editors) Bergey's Manual of Determinative Bacteriology, 7th ed. Baltimore, MD: The Williams & Wilkins Co, Baltimore; 1957; pp. 83– 88
    [Google Scholar]
  4. Wood AP, Kelly DP. Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulphur-oxidising autotrophic Eubacterium from a western Australian hypersaline lake. Arch Microbiol 1991; 156: 277– 280 [CrossRef]
    [Google Scholar]
  5. Durand P, Reysenbach A-L, Prieur D, Pace N. Isolation and characterization of Thiobacillus hydrothermalis sp. nov., a mesophilic obligately chemolithotrophic bacterium isolated from a deep-sea hydrothermal vent in Fiji Basin. Arch Microbiol 1993; 159: 39– 44 [CrossRef]
    [Google Scholar]
  6. Nathansohn A. Uber eine neue Gruppe Von Schwefelbakterien und ihren Stoffwechsel. Mitt Zool Stn Neapol 1902; 15: 655– 680
    [Google Scholar]
  7. Boden R. Editorial: 115 years of sulfur microbiology. FEMS Microbiol Lett 2017; 364: fnx043 [CrossRef] [PubMed]
    [Google Scholar]
  8. Parker CD. Species of sulphur bacteria associated with the corrosion of Concrete. Nature 1947; 159: 439– 440 [CrossRef] [PubMed]
    [Google Scholar]
  9. Parker CD, Prisk J. The oxidation of inorganic compounds of sulphur by various sulphur bacteria. J Gen Microbiol 1953; 8: 344– 364 [CrossRef] [PubMed]
    [Google Scholar]
  10. Trudinger PA. Thiosulphate oxidation and cytochromes in Thiobacillus X. Biochem J 1961; 78: 673– 680 [Crossref]
    [Google Scholar]
  11. Boden R, Cleland D, Green PN, Katayama Y, Uchino Y et al. Phylogenetic assessment of culture collection strains of Thiobacillus thioparus, and definitive 16S rRNA gene sequences for T. thioparus, T. denitrificans, and Halothiobacillus neapolitanus. Arch Microbiol 2012; 194: 187– 195 [CrossRef] [PubMed]
    [Google Scholar]
  12. Hutchinson M, Johnstone KI, White D. The taxonomy of certain Thiobacilli. J Gen Microbiol 1965; 41: 357– 366 [CrossRef] [PubMed]
    [Google Scholar]
  13. Kelly DP. Energy Metabolism of the Chemoautotrophic Bacterium Thiobacillus Ph.D Thesis University College London, London, UK: 1965
    [Google Scholar]
  14. Kelly DP, Syrett PJ. Effect of 2:4-dinitrophenol on carbon dioxide fixation by a Thiobacillus. Nature 1963; 197: 1087– 1089 [CrossRef]
    [Google Scholar]
  15. Kelly DP, Syrett PJ. The effect of uncoupling agents on carbon dioxide fixation by a Thiobacillus. J Gen Microbiol 1964; 34: 307– 317 [CrossRef] [PubMed]
    [Google Scholar]
  16. Kelly DP, Syrett PJ. Inhibition of formation of adenosine triphosphate in Thiobacillus thioparus by 2:4-dinitrophenol. Nature 1964; 202: 597– 598 [CrossRef] [PubMed]
    [Google Scholar]
  17. Kelly DP, Syrett PJ. [35S]thiosulphate oxidation by Thiobacillus strain C. Biochem J 1966; 98: 537– 545 [PubMed] [Crossref]
    [Google Scholar]
  18. Kelly DP, Syrett PJ. Energy coupling during sulphur compound oxidation by Thiobacillus sp. strain C. J Gen Microbiol 1966; 43: 109– 118 [CrossRef] [PubMed]
    [Google Scholar]
  19. Wood AP, Woodall CA, Kelly DP. Halothiobacillus neapolitanus strain OSWA isolated from "The Old Sulphur Well" at Harrogate (Yorkshire, England). Syst Appl Microbiol 2005; 28: 746– 748 [CrossRef] [PubMed]
    [Google Scholar]
  20. Visser JM, Jong GAH, Vries S, Robertson LA, Kuenen JG. cbb 3-type cytochrome oxidase in the obligately chemolithoautotrophic Thiobacillus sp. W5. FEMS Microbiol Lett 1997; 147: 127– 132 [CrossRef]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  22. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32: 1792– 1797 [CrossRef] [PubMed]
    [Google Scholar]
  23. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10: 512– 526 [PubMed]
    [Google Scholar]
  24. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008; 25: 1307– 1320 [CrossRef] [PubMed]
    [Google Scholar]
  25. Banciu HL, Sorokin DY, Tourova TP, Galinski EA, Muntyan MS et al. Influence of salts and pH on growth and activity of a novel facultatively alkaliphilic, extremely salt-tolerant, obligately chemolithoautotrophic sufur-oxidizing Gammaproteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from South-Western Siberian soda lakes. Extremophiles 2008; 12: 391– 404 [CrossRef] [PubMed]
    [Google Scholar]
  26. Kelly DP, Stackebrandt E, Burghardt J, Wood AP. Confirmation that Thiobacillus halophilus and Thiobacillus hydrothermalis are distinct species within the γ-subclass of the Proteobacteria. Arch Microbiol 1998; 170: 138– 140 [CrossRef] [PubMed]
    [Google Scholar]
  27. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12: 635– 645 [CrossRef] [PubMed]
    [Google Scholar]
  28. Boden R, Hutt LP, Rae AW. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the 'Proteobacteria', and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol 2017; 67: 1191– 1205 [CrossRef] [PubMed]
    [Google Scholar]
  29. Boden R, Scott KM, Williams J, Russel S, Antonen K et al. An evaluation of Thiomicrospira, Hydrogenovibrio and Thioalkalimicrobium: reclassification of four species of Thiomicrospira to each Thiomicrorhabdus gen. nov. and Hydrogenovibrio, and reclassification of all four species of Thioalkalimicrobium to Thiomicrospira. Int J Syst Evol Microbiol 2017; 67: 1140– 1151 [CrossRef] [PubMed]
    [Google Scholar]
  30. Fournier PE, Suhre K, Fournous G, Raoult D. Estimation of prokaryote genomic DNA G+C content by sequencing universally conserved genes. Int J Syst Evol Microbiol 2006; 56: 1025– 1029 [CrossRef] [PubMed]
    [Google Scholar]
  31. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
  32. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR et al. Protein identification tools on the ExPASy server. In Walker JM. (editor) The Proteomics Protocols Handbook Tolowa, NJ: Humana Press; 2005; pp. 571– 606 [Crossref]
    [Google Scholar]
  33. Kelly DP, Wood AP. Family III. Halothiobacillaceae fam. nov. Kelly and Wood 2003. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. New York, NY: Springer; 2005; pp. 58
    [Google Scholar]
  34. Geddes MC, De Decker P, Williams WD, Morton DW, Topping M et al. On the chemistry and biota of some saline lakes in Western Australia. In Williams WD. (editor) Salt Lakes, Proceedings of the International Symposium on Athalassic (Inland) Salt Lakes, Held at Adelaide, Australia, October 1979 The Hague, Netherlands: Dr W. Junk Publishers; 1981; pp. 201– 222
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002222
Loading
/content/journal/ijsem/10.1099/ijsem.0.002222
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error