1887

Abstract

A strictly aerobic Gram-stain-negative bacterium, designated strain KER25-10, was isolated from a laboratory air conditioning system in South Korea. Cells were yellow-pigmented, non-motile rods showing catalase- and oxidase-positive reactions. The strain grew at pH 4.0–9.0 (optimum, pH 6.0–7.0) and 10–40 °C (optimum, 30 °C) and in the presence of 0–3 % (w/v) NaCl (optimum, 0 %). The G+C content of the genomic DNA was 65.1 mol%. Strain KER25-10 contained ubiquinone-10 (Q-10) as the predominant isoprenoid quinone and C16 : 0, C17 : 1ω6c, summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c) and summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1 ω6c) as the major fatty acids. The major polar lipids were sphingoglycolipid, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. Only spermidine was detected as the polyamine. Phylogenetic analysis based on 16S rRNA sequences indicated that strain KER25-10 formed a distinct phylogenetic lineage within the genus Sphingomonas of the family Sphingomonadaceae and the strain was most closely related to Sphingomonas kyeonggiense THG-DT81 with a 96.8 % 16S rRNA gene sequence similarity. On the basis of phenotypic, chemotaxonomic and molecular features, strain KER25-10 clearly represents a novel species of the genus Sphingomonas , for which the name Sphingomonas frigidaeris sp. nov. is proposed. The type strain is KER25-10 (=KACC 19285=JCM 32053).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002221
2017-09-08
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/3907.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002221&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34: 99– 119 [CrossRef] [PubMed]
    [Google Scholar]
  2. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51: 1405– 1417 [CrossRef] [PubMed]
    [Google Scholar]
  3. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002; 52: 1485– 1496 [CrossRef] [PubMed]
    [Google Scholar]
  4. Kim SJ, Moon JY, Lim JM, Ahn JH, Weon HY et al. Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. Int J Syst Evol Microbiol 2014; 64: 926– 932 [CrossRef] [PubMed]
    [Google Scholar]
  5. Yoon JH, Kang SJ, Lee SY, Oh TK. Sphingomonas insulae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2008; 58: 231– 236 [CrossRef] [PubMed]
    [Google Scholar]
  6. Sheu SY, Chen YL, Chen WM. Sphingomonas fonticola sp. nov., isolated from spring water. Int J Syst Evol Microbiol 2015; 65: 4495– 4502 [CrossRef] [PubMed]
    [Google Scholar]
  7. Zhu L, Si M, Li C, Xin K, Chen C et al. Sphingomonas gei sp. nov., isolated from roots of Geum aleppicum. Int J Syst Evol Microbiol 2015; 65: 1160– 1166 [CrossRef] [PubMed]
    [Google Scholar]
  8. Son HM, Kook M, Tran HT, Kim KY, Park SY et al. Sphingomonas kyeonggiense sp. nov., isolated from soil of a ginseng field. Antonie van Leeuwenhoek 2014; 105: 791– 797 [CrossRef] [PubMed]
    [Google Scholar]
  9. Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ et al. Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 2012; 62: 2835– 2843 [CrossRef] [PubMed]
    [Google Scholar]
  10. Lee HJ, Jeong SE, Cho MS, Kim S, Lee SS et al. Flavihumibacter solisilvae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2014; 64: 2897– 2901 [CrossRef] [PubMed]
    [Google Scholar]
  11. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  12. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007; 3: e56 [CrossRef] [PubMed]
    [Google Scholar]
  13. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.6a Seattle: Department of genetics, University of Washington, Seattle, WA, USA; 2002
    [Google Scholar]
  14. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312– 1313 [CrossRef] [PubMed]
    [Google Scholar]
  15. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64: 346– 351 [CrossRef] [PubMed]
    [Google Scholar]
  16. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015; 38: 209– 216 [CrossRef] [PubMed]
    [Google Scholar]
  17. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33: 152– 155
    [Google Scholar]
  18. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  19. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19: 1– 67
    [Google Scholar]
  20. Chen X, Wang H, Xu J, Song D, Sun G et al. Sphingobium hydrophobicum sp. nov., a hydrophobic bacterium isolated from electronic-waste-contaminated sediment. Int J Syst Evol Microbiol 2016; 66: 3912– 3916 [CrossRef] [PubMed]
    [Google Scholar]
  21. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 208 [Crossref]
    [Google Scholar]
  22. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47: 698– 708 [CrossRef]
    [Google Scholar]
  23. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.; 1990
    [Google Scholar]
  24. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4: 770– 773 [PubMed] [Crossref]
    [Google Scholar]
  25. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27: 104– 117 [CrossRef]
    [Google Scholar]
  26. Chen WM, Li YS, Sheu SY. Sphingomonas piscinae sp. nov., isolated from a fish pond. Int J Syst Evol Microbiol 2016; 66: 5301– 5308 [CrossRef] [PubMed]
    [Google Scholar]
  27. Kim JH, Kim SH, Kim KH, Lee PC. Sphingomonas lacus sp. nov., an astaxanthin-dideoxyglycoside-producing species isolated from soil near a pond. Int J Syst Evol Microbiol 2015; 65: 2824– 2830 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002221
Loading
/content/journal/ijsem/10.1099/ijsem.0.002221
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error