1887

Abstract

A Gram-stain-positive, aerobic, non-spore-forming, atrichous and short rod-shaped endophytic actinomycete, designated strain BGMRC 2075, was isolated from the leaves of Kandelia candel, and was subjected to polyphasic characterization to unravel its taxonomic position. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain BGMRC 2075 belongs to the genus Nocardioides ,showing the highest 16S rRNA gene sequence similarity to Nocardioides aestuarii JC2056 (96.1 %), Nocardioides agariphilus MSL-28 (95.1 %) and Nocardioides islandiensis MSL-26 (95.1 %). The predominant cellular fatty acids of strain BGMRC 2075 were iso-C16 : 0, C17 : 1ω8c and C17 : 0. The major menaquinone was MK-8(H4). The diagnostic diamino acid in the cell-wall peptidoglycan was ll-2,6-diaminopimelic acid. The predominant cell-wall sugars were composed of ribose and glucose. The polar lipid pattern contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylcholine, five unknown phospholipids, one phospholipid of unknown structure containing glucosamine, and an unknown polar lipid. The DNA G+C content was 70.8 mol%. All these data support the allocation of the novel strain to the genus Nocardioides . The results of physiological and biochemical characterization allow the phenotypic differentiation of strain BGMRC 2075 from N. aestuarii JC2056, N. agariphilus MSL-28 and N. islandiensis MSL-26. Strain BGMRC 2075 represents a novel species of the genus Nocardioides , for which we propose the name Nocardioides kandeliae sp. nov. The type strain is BGMRC 2075 (=KCTC 39886=DSM 104480).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002218
2017-09-12
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/3888.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002218&mimeType=html&fmt=ahah

References

  1. Prauser H. Nocardioides, a new genus of order Actinomycetales. Int J Syst Bacteriol 1976; 26: 58– 65 [CrossRef]
    [Google Scholar]
  2. O'Donnell AG, Goodfellow M, Minnikin DE. Lipids in the classification of Nocardioides: reclassification of Arthrobacter simplex (Jensen) lochhead in the genus Nocardioides (Prauser) emend. O'Donnell et al. as Nocardioides simplex comb. nov. Arch Microbiol 1982; 133: 323– 329 [CrossRef] [PubMed]
    [Google Scholar]
  3. Urzì C, Salamone P, Schumann P, Stackebrandt E. Marmoricola aurantiacus gen. nov., sp. nov., a coccoid member of the family Nocardioidaceae isolated from a marble statue. Int J Syst Evol Microbiol 2000; 50: 529– 536 [CrossRef] [PubMed]
    [Google Scholar]
  4. Zhang JY, Liu XY, Liu SJ. Nocardioides terrae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2009; 59: 2444– 2448 [CrossRef] [PubMed]
    [Google Scholar]
  5. Singh H, Du J, Trinh H, Won K, Yang JE et al. Nocardioides albidus sp. nov., an actinobacterium isolated from garden soil. Int J Syst Evol Microbiol 2016; 66: 371– 378 [CrossRef] [PubMed]
    [Google Scholar]
  6. Srinivasan S, Lee SS, Lee JJ, Kim MK. Nocardioides soli sp. nov., a bacterium isolated from a mountain soil. Antonie van Leeuwenhoek 2014; 106: 271– 278 [CrossRef] [PubMed]
    [Google Scholar]
  7. Sultanpuram VR, Mothe T, Mohammed F. Nocardioides solisilvae sp. nov., isolated from a forest soil. Antonie van Leeuwenhoek 2015; 107: 1599– 1606 [CrossRef] [PubMed]
    [Google Scholar]
  8. Tuo L, Dong YP, Habden X, Liu JM, Guo L et al. Nocardioides deserti sp. nov., an actinobacterium isolated from desert soil. Int J Syst Evol Microbiol 2015; 65: 1604– 1610 [CrossRef] [PubMed]
    [Google Scholar]
  9. Amin A, Ahmed I, Habib N, Abbas S, Xiao M et al. Nocardioides pakistanensis sp. nov., isolated from a hot water spring of Tatta Pani in Pakistan. Antonie van Leeuwenhoek 2016; 109: 1101– 1109 [CrossRef] [PubMed]
    [Google Scholar]
  10. Wang L, Li J, Zhang G. Nocardioides rotundus sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2016; 66: 1932– 1936 [CrossRef] [PubMed]
    [Google Scholar]
  11. Deng S, Chang X, Zhang Y, Ren L, Jiang F et al. Nocardioides antarcticus sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2015; 65: 2615– 2621 [CrossRef] [PubMed]
    [Google Scholar]
  12. Zhang DF, Zhong JM, Zhang XM, Jiang Z, Zhou EM et al. Nocardioides nanhaiensis sp. nov., an actinobacterium isolated from a marine sediment sample. Int J Syst Evol Microbiol 2014; 64: 2718– 2722 [CrossRef] [PubMed]
    [Google Scholar]
  13. Zhao Y, Liu Q, Kang MS, Jin F, Yu H et al. Nocardioides ungokensis sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 2015; 65: 4857– 4862 [CrossRef] [PubMed]
    [Google Scholar]
  14. Glaeser SP, Mcinroy JA, Busse HJ, Kämpfer P. Nocardioides zeae sp. nov., isolated from the stem of Zea mays. Int J Syst Evol Microbiol 2014; 64: 2491– 2496 [CrossRef] [PubMed]
    [Google Scholar]
  15. Kämpfer P, Glaeser SP, Mcinroy JA, Busse HJ. Nocardioides zeicaulis sp. nov., an endophyte actinobacterium of maize. Int J Syst Evol Microbiol 2016; 66: 1869– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  16. Xu H, Zhang S, Cheng J, Asem MD, Zhang MY et al. Nocardioides ginkgobilobae sp. nov., an endophytic actinobacterium isolated from the root of the living fossil Ginkgo biloba L. Int J Syst Evol Microbiol 2016; 66: 2013– 2018 [CrossRef] [PubMed]
    [Google Scholar]
  17. Liu Q, Liu HC, Zhang JL, Zhou YG, Xin YH. Nocardioides glacieisoli sp. nov., isolated from a glacier. Int J Syst Evol Microbiol 2015; 65: 4845– 4849 [CrossRef] [PubMed]
    [Google Scholar]
  18. Lin SY, Wen CZ, Hameed A, Liu YC, Hsu YH et al. Nocardioides echinoideorum sp. nov., isolated from sea urchins (Tripneustes gratilla). Int J Syst Evol Microbiol 2015; 65: 1953– 1958 [CrossRef] [PubMed]
    [Google Scholar]
  19. Lee SD, Lee DW. Nocardioides rubroscoriae sp. nov., isolated from volcanic ash. Antonie van Leeuwenhoek 2014; 105: 1017– 1023 [CrossRef] [PubMed]
    [Google Scholar]
  20. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF. A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg 1975; 130: 341– 346 [CrossRef] [PubMed]
    [Google Scholar]
  21. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55: 1149– 1153 [CrossRef] [PubMed]
    [Google Scholar]
  22. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  23. Kelly KL, Judd DB. ISCC-NBS Color-Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  24. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24: 710– 715 [CrossRef] [PubMed]
    [Google Scholar]
  25. Choi DH, Kim HM, Noh JH, Cho BC. Nocardioides marinus sp. nov. Int J Syst Evol Microbiol 2007; 57: 775– 779 [CrossRef] [PubMed]
    [Google Scholar]
  26. Yoon JH, Kim IG, Kang KH, Oh TK, Park YH. Nocardioides aquiterrae sp. nov., isolated from groundwater in Korea. Int J Syst Evol Microbiol 2004; 54: 71– 75 [CrossRef] [PubMed]
    [Google Scholar]
  27. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28: 226– 231 [PubMed]
    [Google Scholar]
  28. Whiton RS, Lau P, Morgan SL, Gilbart J, Fox A. Modifications in the alditol acetate method for analysis of muramic acid and other neutral and amino sugars by capillary gas chromatography-mass spectrometry with selected ion monitoring. J Chromatogr 1985; 347: 109– 120 [CrossRef] [PubMed]
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  30. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  31. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series No. 20) New York, NY: Academic Press; 1985; pp. 173– 199
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Zhang DC, Schumann P, Redzic M, Zhou YG, Liu HC et al. Nocardioides alpinus sp. nov., a psychrophilic actinomycete isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 2012; 62: 445– 450 [CrossRef] [PubMed]
    [Google Scholar]
  34. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57: 1424– 1428 [CrossRef] [PubMed]
    [Google Scholar]
  35. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  36. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  37. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  38. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  39. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  40. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983; [Crossref]
    [Google Scholar]
  41. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  42. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  43. Yi H, Chun J. Nocardioides aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2004; 54: 2151– 2154 [CrossRef] [PubMed]
    [Google Scholar]
  44. Dastager SG, Lee JC, Ju YJ, Park DJ, Kim CJ. Nocardioides koreensis sp. nov., Nocardioides bigeumensis sp. nov. and Nocardioides agariphilus sp. nov., isolated from soil from Bigeum Island, Korea. Int J Syst Evol Microbiol 2008; 58: 2292– 2296 [CrossRef] [PubMed]
    [Google Scholar]
  45. Dastager SG, Lee JC, Ju YJ, Park DJ, Kim CJ. Nocardioides dilutes sp. nov. isolated from soil in Bigeum Island, Korea. Curr Microbiol 2008; 56: 569– 573 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002218
Loading
/content/journal/ijsem/10.1099/ijsem.0.002218
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error