1887

Abstract

A novel actinobacterium, designated strain NEAU-GS50, was isolated from soil collected from Mount Song and characterized by using a polyphasic approach. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the organism should be assigned to the genus and that it forms a monophyletic clade with its closest relatives JCM 17975 (98.94 % 16S rRNA gene sequence similarity), 1C-HV12 (98.82 %) and DSM45485 (98.68 %). Similarly, chemotaxonomic data including major menaquinones, fatty acid compositions and polar lipid profiles, also supported the placement of strain NEAU-GS50 in the genus However, DNA–DNA relatedness, physiological and biochemical data showed that strain NEAU-GS50 could be distinguished from its closest relatives. Therefore, strain NEAU-GS50 represents a novel species of the genus , for which the name sp. nov. is proposed, with strain NEAU-GS50 (CGMCC4.7398=DSM 104515) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002207
2017-10-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/3829.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002207&mimeType=html&fmt=ahah

References

  1. Krasil'nikov NA, Kalakoutskii LV, Kirillova NF. A new genus of Actinomycetales, Promicromonospora, gen. nov. Biol Bull Acad Sci USSR 1961;1:107–112
    [Google Scholar]
  2. Alonso-Vega P, Santamaría RI, Martínez-Molina E, Trujillo ME. Promicromonospora kroppenstedtii sp. nov., isolated from sandy soil. Int J Syst Evol Microbiol 2008;58:1476–1481 [CrossRef][PubMed]
    [Google Scholar]
  3. Guo L, Liu C, Zhao J, Li C, Guo S et al. Promicromonospora alba sp. nov., a novel actinomycete isolated from the cuticle of Camponotus japonicas Mayr. Int J Syst Evol Microbiol 2016;66:1340–1345 [CrossRef][PubMed]
    [Google Scholar]
  4. Qin S, Jiang JH, Klenk HP, Zhu WY, Zhao GZ et al. Promicromonospora xylanilytica sp. nov., an endophytic actinomycete isolated from surface-sterilized leaves of the medicinal plant Maytenus austroyunnanensis. Int J Syst Evol Microbiol 2012;62:84–89 [CrossRef][PubMed]
    [Google Scholar]
  5. Mohammadipanah F, del Carmen Montero-Calasanz M, Schumann P, Spröer C, Rohde M et al. Promicromonospora kermanensis sp. nov., a new actinobacterium isolated from soil. Int J Syst Evol Microbiol 2016;67:262–267
    [Google Scholar]
  6. Mohammadipanah F, Hamedi J, Spröer C, Montero-Calasanz MC, Schumann P et al. Promicromonospora iranensis sp. nov., an actinobacterium isolated from rhizospheric soil. Int J Syst Evol Microbiol 2014;64:3314–3319 [CrossRef][PubMed]
    [Google Scholar]
  7. Kaewkla O, Franco CM. Promicromonospora endophytica sp. nov., an endophytic actinobacterium isolated from the root of an Australian native Grey Box tree. Int J Syst Evol Microbiol 2012;62:1687–1691 [CrossRef][PubMed]
    [Google Scholar]
  8. Busse HJ, Zlamala C, Buczolits S, Lubitz W, Kämpfer P et al. Promicromonospora vindobonensis sp. nov. and Promicromonospora aerolata sp. nov., isolated from the air in the medieval 'Virgilkapelle' in Vienna. Int J Syst Evol Microbiol 2003;53:1503–1507 [CrossRef][PubMed]
    [Google Scholar]
  9. Thawai C, Kudo T. Promicromonospora thailandica sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2012;62:2140–2144 [CrossRef][PubMed]
    [Google Scholar]
  10. Martin K, Schäfer J, Kämpfer P. Promicromonospora umidemergens sp. nov., isolated from moisture from indoor wall material. Int J Syst Evol Microbiol 2010;60:537–541 [CrossRef][PubMed]
    [Google Scholar]
  11. Atlas RM. In  . Parks LC. (editor) Handbook of Microbiological Media Boca Raton: CRC Press; 1993; pp55
    [Google Scholar]
  12. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  13. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949;57:141–145[PubMed]
    [Google Scholar]
  14. Waksman SA. The Actinomycetes. A Summary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  15. Kelly KL. Inter-Society Colour Council-National Bureau of Standards Colour-Name Charts Illustrated with Centroid Colours Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  16. Jia F, Liu C, Wang X, Zhao J, Liu Q et al. Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie van Leeuwenhoek 2013;103:399–408 [CrossRef][PubMed]
    [Google Scholar]
  17. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  18. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin Strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  19. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993;43:805–812 [CrossRef]
    [Google Scholar]
  20. Smibert RM, Krieg NR. Phenotypic characterisation. In Gerhardt P, R. G. E Murray, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  21. Mckerrow J, Vagg S, Mckinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000;30:178–182 [CrossRef][PubMed]
    [Google Scholar]
  22. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 1980;188:221–233 [CrossRef]
    [Google Scholar]
  23. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy Special Publicationvol. 6 Arlington: Society of Industrial Microbiology; 1980; pp.227–291
    [Google Scholar]
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  25. Collins MD. Chemical methods in bacterial systematics. In Goodfellow M, Minnikin DE. (editors) Isoprenoid Quinone Analyses in Bacterial Classification and Identification London: Academic Press; 1985; pp.267–284
    [Google Scholar]
  26. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989;16:176–178
    [Google Scholar]
  27. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014;105:307–315 [CrossRef][PubMed]
    [Google Scholar]
  28. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011;61:1165–1169 [CrossRef][PubMed]
    [Google Scholar]
  29. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000;50:2031–2036 [CrossRef][PubMed]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  32. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  33. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  34. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  35. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  36. Mandel M, Marmur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968;12:195–206[Crossref]
    [Google Scholar]
  37. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  38. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  39. Schumann P, Stackebrandt E. The family Promicromonosporaceae Part B. In Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME. et al. (editors) Bergey's Manual of Systematic Bacteriology Springer: 2012
    [Google Scholar]
  40. Wayne LG, Brennerdj CRR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002207
Loading
/content/journal/ijsem/10.1099/ijsem.0.002207
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error