1887

Abstract

With the description of the genus , the taxonomic position of was re-evaluated based on analyses of 16S rRNA gene sequences and phenotypic and chemotaxonomic characteristics. The results revealed that is clearly a member of the genus and we proposed that (Subhash Y, Sasikala C, Ramana CV. 2014;64:2238–2243) should be reclassified as comb. nov. An emended description of the genus is also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002201
2017-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4328.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002201&mimeType=html&fmt=ahah

References

  1. Jogler M, Chen H, Simon J, Rohde M, Busse HJ et al. Description of Sphingorhabdus planktonica gen. nov., sp. nov. and reclassification of three related members of the genus Sphingopyxis in the genus Sphingorhabdus gen. nov. Int J Syst Evol Microbiol 2013; 63:1342–1349 [View Article][PubMed]
    [Google Scholar]
  2. Park JM, Park S, Jung YT, Kim H, Lee JS et al. Sphingorhabdus arenilitoris sp. nov., isolated from a coastal sand, and reclassification of Sphingopyxis rigui as Sphingorhabdus rigui comb. nov. and Sphingopyxis wooponensis as Sphingorhabdus wooponensis comb. nov. Int J Syst Evol Microbiol 2014; 64:2551–2557 [View Article][PubMed]
    [Google Scholar]
  3. Subhash Y, Sasikala C, Ramana CV. Sphingopyxis contaminans sp. nov., isolated from a contaminated Petri dish. Int J Syst Evol Microbiol 2014; 64:2238–2243 [View Article][PubMed]
    [Google Scholar]
  4. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  5. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  6. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  7. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  8. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095[PubMed]
    [Google Scholar]
  9. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  10. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  11. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. et al (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007 pp. 330–393
    [Google Scholar]
  12. Baik KS, Choe HN, Park SC, Hwang YM, Kim EM et al. Sphingopyxis rigui sp. nov. and Sphingopyxis wooponensis sp. nov., isolated from wetland freshwater, and emended description of the genus Sphingopyxis. Int J Syst Evol Microbiol 2013; 63:1297–1303 [View Article][PubMed]
    [Google Scholar]
  13. Kim BS, Lim YW, Chun J. Sphingopyxis marina sp. nov. and Sphingopyxis litoris sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2008; 58:2415–2419 [View Article][PubMed]
    [Google Scholar]
  14. Yoon JH, Oh TK. Sphingopyxis flavimaris sp. nov., isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2005; 55:369–373 [View Article][PubMed]
    [Google Scholar]
  15. Romanenko LA, Tanaka N, Svetashev VI, Mikhailov VV. Sphingorhabdus pacificus sp. nov., isolated from sandy sediments of the Sea of Japan seashore. Arch Microbiol 2015; 197:147–153 [View Article][PubMed]
    [Google Scholar]
  16. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978; 75:4801–4805 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002201
Loading
/content/journal/ijsem/10.1099/ijsem.0.002201
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error