1887

Abstract

Strain Acr-14, isolated from coral, was characterized by using a polyphasic taxonomy approach. Cells of strain Acr-14 were Gram-stain-negative, aerobic, non-motile, poly-β-hydroxybutyrate-accumulating, rod-shaped and formed creamy white colonies. Optimal growth occurred at 30 °C, pH 7 and in the presence of 2 % NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Acr-14 belonged to the genus and was most closely related to WP70 with sequence similarity of 96.7 %. Strain Acr-14 contained summed feature 3 (Cω and/or Cω), summed feature 8 (Cω and/or Cω) and C as the predominant fatty acids. The predominant isoprenoid quinone was Q-9. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G+C content of strain Acr-14 was 49.1 mol%. Differential phenotypic properties, together with the phylogenetic inference, demonstrated that strain Acr-14 should be classified as a novel species of the genus , for which the name sp. nov. is presented. The type strain is Acr-14 (=BCRC 80922=LMG 29482=KCTC 42901).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002194
2017-10-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/3791.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002194&mimeType=html&fmt=ahah

References

  1. Kurahashi M, Yokota A. Endozoicomonas elysicola gen. nov., sp. nov., a γ-proteobacterium isolated from the sea slug Elysia ornata. Syst Appl Microbiol 2007;30:202–206 [CrossRef][PubMed]
    [Google Scholar]
  2. Nishijima M, Adachi K, Katsuta A, Shizuri Y, Yamasato K. Endozoicomonas numazuensis sp. nov., a gammaproteobacterium isolated from marine sponges, and emended description of the genus Endozoicomonas Kurahashi and Yokota 2007. Int J Syst Evol Microbiol 2013;63:709–714 [CrossRef][PubMed]
    [Google Scholar]
  3. Pike RE, Haltli B, Kerr RG. Description of Endozoicomonas euniceicola sp. nov. and Endozoicomonas gorgoniicola sp. nov., bacteria isolated from the octocorals Eunicea fusca and Plexaura sp., and an emended description of the genus Endozoicomonas. Int J Syst Evol Microbiol 2013;63:4294–4302 [CrossRef][PubMed]
    [Google Scholar]
  4. Garrity GM, Bell JA, Order LT VIII. Oceanospirillales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 (The Proteobacteria), Part B (The Gammaproteobacteria) New York: Springer; 2005; pp.270–323[Crossref]
    [Google Scholar]
  5. Appolinario LR, Tschoeke DA, Rua CP, Venas T, Campeão ME et al. Description of Endozoicomonas arenosclerae sp. nov. using a genomic taxonomy approach. Antonie van Leeuwenhoek 2016;109:431–438 [CrossRef][PubMed]
    [Google Scholar]
  6. Schreiber L, Kjeldsen KU, Obst M, Funch P, Schramm A. Description of Endozoicomonas ascidiicola sp. nov., isolated from Scandinavian ascidians. Syst Appl Microbiol 2016;39:313–318 [CrossRef][PubMed]
    [Google Scholar]
  7. Hyun DW, Shin NR, Kim MS, Oh SJ, Kim PS et al. Endozoicomonas atrinae sp. nov., isolated from the intestine of a comb pen shell Atrina pectinata. Int J Syst Evol Microbiol 2014;64:2312–2318 [CrossRef][PubMed]
    [Google Scholar]
  8. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  9. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997;47:249–251 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen WM, Laevens S, Lee TM, Coenye T, de Vos P et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001;51:1729–1735 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  12. Cole JR, Wang Q, Cardenas E, Fish J, Chai B et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009;37:D141–D145 [CrossRef][PubMed]
    [Google Scholar]
  13. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  15. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  16. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983;[Crossref]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  19. Kluge AG, Farris JS. Quantitative phyletics and the evolution of Anurans. Syst Zool 1969;18:1–32 [CrossRef]
    [Google Scholar]
  20. Phylip FJ. Phylogeny inference package), version 3.5c. distributed by the author Department of Genome Sciences, University of Washington, Seattle, USA 1993
    [Google Scholar]
  21. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  22. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–155
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  24. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  25. Powers EM. Efficacy of the ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne Bacteria and yeasts. Appl Environ Microbiol 1995;61:3756–3758[PubMed]
    [Google Scholar]
  26. Schlegel HG, Lafferty R, Krauss I. The isolation of mutants not accumulating poly-beta-hydroxybutyric acid. Arch Mikrobiol 1970;71:283–294 [CrossRef][PubMed]
    [Google Scholar]
  27. Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 1999;171:73–80 [CrossRef][PubMed]
    [Google Scholar]
  28. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparativesystematic. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.330–393
    [Google Scholar]
  29. Wen CM, Tseng CS, Cheng CY, Li YK. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002;35:213–219 [CrossRef][PubMed]
    [Google Scholar]
  30. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  31. Nokhal T-H, Schlegel HG. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 1983;33:26–37 [CrossRef]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp.121–161
    [Google Scholar]
  34. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp.265–309
    [Google Scholar]
  35. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  36. Yang CS, Chen MH, Arun AB, Chen CA, Wang JT et al. Endozoicomonas montiporae sp. nov., isolated from the encrusting pore coral Montipora aequituberculata. Int J Syst Evol Microbiol 2010;60:1158–1162 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002194
Loading
/content/journal/ijsem/10.1099/ijsem.0.002194
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error