1887

Abstract

A Gram-stain-positive, aerobic, non-motile, short-rod shaped actinobacterium, designated THG-T2.14, was isolated from soil sampled from the rhizosphere of mugunghwa. Growth occurred at 10–40 °C (optimum 30 °C), at pH 5.0–10.0 (optimum 7.0) and at 0–7.0 % NaCl (optimum 3.0 %). Based on 16S rRNA gene sequence analysis, the nearest phylogenetic neighbours of strain THG-T2.14 were identified as Microbacterium yannicii DSM 23203 (98.8 %), Microbacterium trichothecenolyticum DSM 8608 (98.8 %), Microbacterium arthrosphaerae DSM 22421 (98.7 %) and Microbacterium jejuense KACC 17124 (98.4 %). The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, one unidentified lipid, two unidentified phospholipids and two unidentified phosphoglycolipids. The menaquinones were MK-12, and MK-13. The major polyamine was spermidine. The peptidoglycan contained ornithine, alanine, glycine, homoserine and glutamic acid. The diagnostic diamino acid was ornithine. The acyl type of the muramic acid was glycolyl. The whole-cell sugars were rhamnose, ribose, galactose, arabinose, xylose and glucose. The DNA G+C content of strain THG-T2.14 was 71.2 mol%. The DNA–DNA relatedness between strain THG-T2.14 and its closest reference strains were significantly lower than the threshold value of 70 %. On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics and DNA–DNA hybridization data, strain THG-T2.14 represents a novel species of the genus Microbacterium , for which the name Microbacterium hibisci sp. nov. is proposed. The type strain is THG-T2.14 (=KACC 18931=CCTCC AB 2016180).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002167
2017-09-06
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3564.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002167&mimeType=html&fmt=ahah

References

  1. Orla-Jensen S. The Lactic Acid Bacteria Copenhagen: Høst & Sons; 1919
    [Google Scholar]
  2. Collins MD, Jones D, Kroppenstedt RM. Reclassification of Brevibacterium imperiale (Steinhaus) and "Corynebacterium laevaniformans" (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov. Syst Appl Microbiol 1983;4:65–78 [CrossRef][PubMed]
    [Google Scholar]
  3. Takeuchi M, Hatano K. Union of the genera microbacterium orla-jensen and aureobacterium collins et al. in a redefined genus microbacterium. Int J Syst Bacteriol 1998;48:739–747 [CrossRef]
    [Google Scholar]
  4. Kook M, Son HM, Yi TH, Th Y. Microbacterium kyungheense sp. nov. and Microbacterium jejuense sp. nov., isolated from salty soil. Int J Syst Evol Microbiol 2014;64:2267–2273 [CrossRef][PubMed]
    [Google Scholar]
  5. Karojet S, Kunz S, van Dongen JT. Microbacterium yannicii sp. nov., isolated from Arabidopsis thaliana roots. Int J Syst Evol Microbiol 2012;62:822–826 [CrossRef][PubMed]
    [Google Scholar]
  6. Kämpfer P, Rekha PD, Schumann P, Arun AB, Young CC et al. Microbacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna attems. Int J Syst Evol Microbiol 2011;61:1334–1337 [CrossRef][PubMed]
    [Google Scholar]
  7. Suzuki KI, Hamada M. et al. Genus I. Microbacterium. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K I, Ludwig W, Whitman WB. (editors) Bergey's Manual of Systematic Bacteriology, Second ed.Vol. 5 New York, NY: Springer; 2012; pp.814–852[CrossRef]
    [Google Scholar]
  8. Alves A, Correia A, Igual JM, Trujillo ME. Microbacterium endophyticum sp. nov. and Microbacterium halimionae sp. nov., endophytes isolated from the salt-marsh plant Halimione portulacoides and emended description of the genus Microbacterium. Syst Appl Microbiol 2014;37:474–479 [CrossRef][PubMed]
    [Google Scholar]
  9. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16s ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  10. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: [CrossRef][PubMed]
    [Google Scholar]
  11. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  12. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  15. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969;18:1–32 [CrossRef]
    [Google Scholar]
  16. Yap Iv NRJ. WinBoot: A Program for Performing Bootstrap Analysis of Binary Data to Determine the Confidence Limits of UPGMA-Based Dendrograms Manila: International Rice Research Institute; 1996; pp.1–22
    [Google Scholar]
  17. Buck JD, Nonstaining BJD. Nonstaining (KOH) method for determination of gram reactions of marine Bacteria. Appl Environ Microbiol 1982;44:992–993[PubMed]
    [Google Scholar]
  18. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178:703 [CrossRef][PubMed]
    [Google Scholar]
  19. Yan ZF, Trinh H, Moya G, Lin P, Li CT, Ct L et al. Lysobacter rhizophilus sp. nov., isolated from rhizosphere soil of mugunghwa, the nationalflower of South Korea. Int J Syst Evol Microbiol 2016;66:4754–4759 [CrossRef][PubMed]
    [Google Scholar]
  20. Yan ZF, Lin P, Chu X, Kook M, Li CT, Ct L et al. Aeromicrobium halotolerans sp. nov., isolated from desert soil sample. Arch Microbiol 2016;198:423–427 [CrossRef][PubMed]
    [Google Scholar]
  21. Adékambi T, Berger P, Raoult D, Drancourt M. rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int J Syst Evol Microbiol 2006;56:133–143 [CrossRef][PubMed]
    [Google Scholar]
  22. NCCL Susceptibility testing Mycobacteria, Nocardia. And Other Aerobic Actinomycetes: Tentative Standard 2000
    [Google Scholar]
  23. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  24. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  25. Stabili L, Gravili C, Tredici SM, Piraino S, Talà A et al. Epibiotic Vibrio luminous Bacteria isolated from some hydrozoa and bryozoa species. Microb Ecol 2008;56:625–636 [CrossRef][PubMed]
    [Google Scholar]
  26. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463464
    [Google Scholar]
  27. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  28. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48:459–470 [CrossRef]
    [Google Scholar]
  29. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical note 101. Newark, DE: MIDI Inc 1990
    [Google Scholar]
  30. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  31. Hu HY, Lim BR, Goto N, Fujie K. Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 2001;47:17–24[PubMed][CrossRef]
    [Google Scholar]
  32. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded Ion Exchanger as Stationary Phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  33. Chen YG, Tang SK, Zhang YQ, Li ZY, Yi LB, Zy L, Lb Y et al. Arthrobacter halodurans sp. nov., a new halotolerant bacterium isolated from sea water. Antonie Van Leeuwenhoek 2009;96:63–70 [CrossRef][PubMed]
    [Google Scholar]
  34. Hu QW, Chu X, Xiao M, Li CT, Yan ZF, Qw H, Ct L et al. Arthrobacter deserti sp. nov., isolated from a desert soil sample. Int J Syst Evol Microbiol 2016;66:2035–2040 [CrossRef][PubMed]
    [Google Scholar]
  35. Uchida K, Kudo T, Suzuki KI, Nakase T. A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 1999;45:49–56 [CrossRef][PubMed]
    [Google Scholar]
  36. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  37. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
    [Google Scholar]
  38. Busse HJ, Kämpfer P, Denner EB. Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 1999;23:242–251 [CrossRef][PubMed]
    [Google Scholar]
  39. Taibi G, Schiavo MR, Gueli MC, Rindina PC, Muratore R et al. Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J Chromatogr B Biomed Sci Appl 2000;745:431–437 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002167
Loading
/content/journal/ijsem/10.1099/ijsem.0.002167
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error