sp. nov., isolated from Pacmanus hydrothermal field, Manus Basin Free

Abstract

A novel bacterial strain S36 was isolated from the deep-sea sediment collected from Pacmanus hydrothermal field, Manus Basin. The strain was Gram-stain-positive, aerobic, rod-shaped, endospore-forming, and motile. It was able to grow at 16–50 °C, pH 6.0–10.0, and in the presence of 0–11 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain S36 was a member of genus and shares the highest sequence identity with D-1,5a (97.0 %). The value of DNA–DNA hybridization between strain S36 and D-1,5a was 22.8 %. The cell wall diagnostic diamino acid of strain S36 was -diaminopimelic acid and the polar lipid profile of strain S36 contained diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The predominant respiratory quinine was MK-7. The major cellular fatty acids were iso-C and anteiso-C. The genomic DNA G+C content of strain S36 was 43.0 mol%. On the basis of phylogenetic analysis, DNA–DNA hybridization, and phenotypic characteristics, it was concluded that strain S36 represents a novel species of the genus , for which the name sp. nov. was proposed. The type strain is S36 (=KCTC 33864=DSM 104297=CGMCC 1.16030).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002164
2017-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3547.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002164&mimeType=html&fmt=ahah

References

  1. Ash C, Farrow JAE, Wallbanks S, Collins MD. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 1991; 13:202–206 [View Article]
    [Google Scholar]
  2. Nielsen P, Fritze D, Priest FG. Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 1995; 141:1745–1761 [View Article]
    [Google Scholar]
  3. Zhu D, Niu L, Xie C, Li P, Sun J et al. Bacillus ectoiniformans sp. nov., a halotolerant bacterium isolated from deep-sea sediments. Int J Syst Evol Microbiol 2016; 66:616–622 [View Article]
    [Google Scholar]
  4. Dastager SG, Mawlankar R, Mual P, Verma A, Krishnamurthi S et al. Bacillus encimensis sp. nov. isolated from marine sediment. Int J Syst Evol Microbiol 2015; 65:1421–1425 [View Article][PubMed]
    [Google Scholar]
  5. Keita MB, Diene SM, Robert C, Raoult D, Fournier PE et al. Non-contiguous finished genome sequence and description of Bacillus massiliogorillae sp. nov. Stand Genomic Sci 2013; 9:93–105 [View Article][PubMed]
    [Google Scholar]
  6. Jiang Z, Zhang DF, Khieu TN, Son CK, Zhang XM et al. Bacillus tianshenii sp. nov., isolated from a marine sediment sample. Int J Syst Evol Microbiol 2014; 64:1998–2002 [View Article][PubMed]
    [Google Scholar]
  7. Liu Y, Lai Q, du J, Shao Z. Bacillus zhangzhouensis sp. nov. and Bacillus australimaris sp. nov. Int J Syst Evol Microbiol 2015; 66:1193–1199 [View Article][PubMed]
    [Google Scholar]
  8. Mawlankar R, Thorat MN, Krishnamurthi S, Dastager SG. Bacillus cellulasensis sp. nov., isolated from marine sediment. Arch Microbiol 2016; 198:83–89 [View Article][PubMed]
    [Google Scholar]
  9. Sylvan JB, Hoffman CL, Momper LM, Toner BM, Amend JP et al. Bacillus rigiliprofundi sp. nov., an endospore-forming, Mn-oxidizing, moderately halophilic bacterium isolated from deep subseafloor basaltic crust. Int J Syst Evol Microbiol 2015; 65:1992–1998 [View Article][PubMed]
    [Google Scholar]
  10. Zhang J, Wang J, Fang C, Song F, Xin Y et al. Bacillus oceanisediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2010; 60:2924–2929 [View Article][PubMed]
    [Google Scholar]
  11. Sun QL, Sun L. Description of Domibacillus iocasae sp. nov., isolated from the deep sea sediment of Okinawa Trough, and emended description of the genus Domibacillus. Int J Syst Evol Microbiol 2015; 66:982–987 [View Article][PubMed]
    [Google Scholar]
  12. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Wiley; 1991 pp. 115–175
    [Google Scholar]
  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  14. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  17. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  21. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  22. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  23. Feng GD, Yang SZ, Li HP, Zhu HH. Massilia putida sp. nov., a dimethyl disulfide-producing bacterium isolated from wolfram mine tailing. Int J Syst Evol Microbiol 2016; 66:50–55 [View Article][PubMed]
    [Google Scholar]
  24. Ten LN, Baek SH, Im WT, Larina LL, Lee JS et al. Bacillus pocheonensis sp. nov., a moderately halotolerant, aerobic bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2007; 57:2532–2537 [View Article][PubMed]
    [Google Scholar]
  25. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int J Syst Bacteriol 1987; 37:463–564 [CrossRef]
    [Google Scholar]
  26. Buck JD, Nonstaining BJD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993[PubMed]
    [Google Scholar]
  27. Yoon JH, Yeo SH, Oh TK, Park YH. Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2004; 54:1197–1201 [View Article][PubMed]
    [Google Scholar]
  28. Wieser M, Worliczek H, Kämpfer P, Busse HJ. Bacillus herbersteinensis sp. nov. Int J Syst Evol Microbiol 2005; 55:2119–2123 [View Article][PubMed]
    [Google Scholar]
  29. Schleifer KH. Analysis of the chemical composition and primary structure of murein. Methods Microbiol 1985; 18:123–156 [CrossRef]
    [Google Scholar]
  30. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  31. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:16
    [Google Scholar]
  32. Slepecky RA, Hemphill HE. The genus Bacillus—nonmedical. Prokaryotes 2006; 4:530–562 [CrossRef]
    [Google Scholar]
  33. Manickam N, Singh NK, Bajaj A, Kumar RM, Kaur G et al. Bacillus mesophilum sp. nov., strain IITR-54T, a novel 4-chlorobiphenyl dechlorinating bacterium. Arch Microbiol 2014; 196:517–523 [View Article][PubMed]
    [Google Scholar]
  34. Subhash Y, Sasikala C, Ramana C. Bacillus luteus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64:1580–1586 [View Article][PubMed]
    [Google Scholar]
  35. Kämpfer P. Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 1994; 17:86–98 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002164
Loading
/content/journal/ijsem/10.1099/ijsem.0.002164
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed