1887

Abstract

A novel actinobacterial strain, designated X17, was isolated from the sediment of Taihu Lake in China and its taxonomic position was investigated by using a polyphasic approach. The isolate formed milky-white colonies comprising aerobic, Gram-stain-positive, rod-shaped cells. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the organism belonged to the genus and consistently formed a distinct cluster with JCM 16020 and MSL 26, sharing 95.5 and 94.8 % 16S rRNA gene sequence similarities, respectively. The genomic DNA G+C content was 69.9 mol%. Chemotaxonomically, the isolate contained -diaminopimelic acid in the cell-wall peptidoglycan, MK-8 (H) as the predominant menaquinone, and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as the polar lipids found in the cell wall. The major fatty acids were 18 : 1 ω9 (38.6 %), 16 : 0 iso (20.3 %), 15 : 0 iso (6.8 %) and 18 : 0 (5.8 %). Based on its physiological, biochemical and chemotaxonomic characteristics, the strain represents a novel species of the genus , for which the name sp. nov. (type strain X17=CGMCC 4.7318=NBRC 112321) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002163
2017-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3535.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002163&mimeType=html&fmt=ahah

References

  1. Prauser H. Nocardioides, a new genus of the order Actinomycetales. Int J Syst Bacteriol 1976; 26:58–65 [View Article]
    [Google Scholar]
  2. Xie F, Yang Y, Ma H, Quan S, Yue D et al. Nocardioides phosphati sp. nov., an actinomycete isolated from a phosphate mine. Int J Syst Evol Microbiol 2017; 67:1522–1528 [View Article][PubMed]
    [Google Scholar]
  3. Wang S, Zhou Y, Zhang G. Nocardioides flavus sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2016; 66:5275–5280 [View Article][PubMed]
    [Google Scholar]
  4. Han MX, Fang BZ, Tian Y, Zhang WQ, Jiao JY et al. Nocardioides cavernae sp. nov., an actinobacterium isolated from a karst cave. Int J Syst Evol Microbiol 2017; 67:633–639 [View Article][PubMed]
    [Google Scholar]
  5. Wang L, Li J, Zhang G. Nocardioides rotundus sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2016; 66:1932–1936 [View Article][PubMed]
    [Google Scholar]
  6. Kämpfer P, Glaeser SP, Mcinroy JA, Busse HJ. Nocardioides zeicaulis sp. nov., an endophyte actinobacterium of maize. Int J Syst Evol Microbiol 2016; 66:1869–1874 [View Article][PubMed]
    [Google Scholar]
  7. Guo L. Ecology. Doing battle with the green monster of Taihu Lake. Science 2007; 317:1166 [View Article][PubMed]
    [Google Scholar]
  8. Qu JH, Hui M, Qu JY, Wang FF, Li HF et al. Geodermatophilus taihuensis sp. nov., isolated from the interfacial sediment of a eutrophic lake. Int J Syst Evol Microbiol 2013; 63:4108–4112 [View Article][PubMed]
    [Google Scholar]
  9. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  11. Myers EW, Miller W. Optimal alignments in linear space. Comput Appl Biosci 1988; 4:11–17 [View Article][PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  13. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  14. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  15. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  17. Dastager SG, Lee JC, Ju YJ, Park DJ, Kim CJ. Nocardioides koreensis sp. nov., Nocardioides bigeumensis sp. nov. and Nocardioides agariphilus sp. nov., isolated from soil from Bigeum Island, Korea. Int J Syst Evol Microbiol 2008; 58:2292–2296 [View Article][PubMed]
    [Google Scholar]
  18. Dastager SG, Lee JC, Ju YJ, Park DJ, Kim CJ. Nocardioides islandiensis sp. nov., isolated from soil in Bigeum Island Korea. Antonie van Leeuwenhoek 2008; 93:401–406 [View Article][PubMed]
    [Google Scholar]
  19. Song GC, Yasir M, Bibi F, Chung EJ, Jeon CO et al. Nocardioides caricicola sp. nov., an endophytic bacterium isolated from a halophyte, Carex scabrifolia Steud. Int J Syst Evol Microbiol 2011; 61:105–109 [View Article][PubMed]
    [Google Scholar]
  20. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  21. Mandel M, Igambi L, Bergendahl J, Dodson ML, Scheltgen E. Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol 1970; 101:333–338[PubMed]
    [Google Scholar]
  22. Gregersen T. Rapid method for distinction of gram-negative from gram-positive bacteria. Eur J Appl microbiol 1978; 5:123–127 [View Article]
    [Google Scholar]
  23. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  24. Bousfield IJ, Keddie RM, Dando TR, Shaw S. Simple rapid methods of cell wall analysis as an aid in the identification of aerobic coryneform bacteria. In Goodfellow M, Minnikin DE. (editors) Chemical Method in Bacterial Systematics London: Academic Press; 1985 pp. 221–236
    [Google Scholar]
  25. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  27. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp. 267–284
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002163
Loading
/content/journal/ijsem/10.1099/ijsem.0.002163
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error