1887

Abstract

An aerobic, gliding and yellow-pigmented bacterium, designated strain SFD31, was isolated from brown alga collected from the South Sea, Republic of Korea. Cells were Gram-stain-negative, and catalase- and oxidase-positive. The neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain SFD31 forms an independent lineage within the genus . Strain SFD31 was related distantly to KMM 6211 (97.9 %, 16S rRNA gene sequence similarity), KMM 6491 (97.4 %), EM106 (97.2 %) and EC29 (96.9 %). The major fatty acids of strain SFD31 were iso-C, iso-C G, summed feature 3 (Cω7 and/or Cω6) and unknown 13.565. The only isoprenoid quinone of the isolate was menaquinone 6. The major polar lipids were phosphatidylethanolamine, four unidentified aminolipids and two unidentified lipids. The DNA G+C content of strain SFD31 was 36.0 mol%. Phenotypic characteristics distinguished strain SFD31 from the related species of the genus . On the basis of the evidence presented in this study, a novel species, sp. nov., is proposed for strain SFD31 (=KCTC 52348=JCM 31798).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002161
2017-09-01
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3540.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002161&mimeType=html&fmt=ahah

References

  1. Nedashkovskaya OI, Kim SB, Han SK, Snauwaert C, Vancanneyt M et al. Winogradskyella thalassocola gen. nov., sp. nov., Winogradskyella epiphytica sp. nov. and Winogradskyella eximia sp. nov., marine bacteria of the family Flavobacteriaceae. Int J Syst Evol Microbiol 2005; 55:49–55 [View Article][PubMed]
    [Google Scholar]
  2. Ivanova EP, Christen R, Gorshkova NM, Zhukova NV, Kurilenko VV et al. Winogradskyella exilis sp. nov., isolated from the starfish Stellaster equestris, and emended description of the genus Winogradskyella. Int J Syst Evol Microbiol 2010; 60:1577–1580 [View Article][PubMed]
    [Google Scholar]
  3. Yoon BJ, Byun HD, Kim JY, Lee DH, Kahng HY et al. Winogradskyella lutea sp. nov., isolated from seawater, and emended description of the genus Winogradskyella. Int J Syst Evol Microbiol 2011; 61:1539–1543 [View Article][PubMed]
    [Google Scholar]
  4. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV. Winogradskyella ulvae sp. nov., an epiphyte of a Pacific seaweed, and emended descriptions of the genus Winogradskyella and Winogradskyella thalassocola, Winogradskyella echinorum, Winogradskyella exilis and Winogradskyella eximia. Int J Syst Evol Microbiol 2012; 62:1450–1456 [View Article][PubMed]
    [Google Scholar]
  5. Begum Z, Srinivas TN, Manasa P, Sailaja B, Sunil B et al. Winogradskyella psychrotolerans sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from Arctic sediment. Int J Syst Evol Microbiol 2013; 63:1646–1652 [View Article][PubMed]
    [Google Scholar]
  6. Kang CH, Lee SY, Yoon JH. Winogradskyella litorisediminis sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2013; 63:1793–1799 [View Article][PubMed]
    [Google Scholar]
  7. Kim JY, Park SH, Seo GY, Kim YJ, Oh DC. Winogradskyella eckloniae sp. nov., a marine bacterium isolated from the brown alga Ecklonia cava. Int J Syst Evol Microbiol 2015; 65:2791–2796 [View Article][PubMed]
    [Google Scholar]
  8. Kim SB, Nedashkovskaya OI. Winogradskyella pacifica sp. nov., a marine bacterium of the family Flavobacteriaceae. Int J Syst Evol Microbiol 2010; 60:1948–1951 [View Article][PubMed]
    [Google Scholar]
  9. Kim SJ, Choi YR, Park SJ, Kim JG, Shin KS et al. Winogradskyella pulchriflava sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2013; 63:3062–3068 [View Article][PubMed]
    [Google Scholar]
  10. Lau SC, Tsoi MM, Li X, Plakhotnikova I, Dobretsov S et al. Winogradskyella poriferorum sp. nov., a novel member of the family Flavobacteriaceae isolated from a sponge in the Bahamas. Int J Syst Evol Microbiol 2005; 55:1589–1592 [View Article][PubMed]
    [Google Scholar]
  11. Lee DH, Cho SJ, Kim SM, Lee SB. Winogradskyella damuponensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013; 63:321–326 [View Article][PubMed]
    [Google Scholar]
  12. Lee SY, Park S, Oh TK, Yoon JH. Winogradskyella aquimaris sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012; 62:1814–1818 [View Article][PubMed]
    [Google Scholar]
  13. Nedashkovskaya OI, Vancanneyt M, Kim SB, Zhukova NV. Winogradskyella echinorum sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2009; 59:1465–1468 [View Article][PubMed]
    [Google Scholar]
  14. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV, Kim SJ, Rhee SK et al. Winogradskyella litoriviva sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2015; 65:3652–3657 [View Article][PubMed]
    [Google Scholar]
  15. Park S, Yoon JH. Winogradskyella undariae sp. nov., a member of the family Flavobacteriaceae isolated from a brown algae reservoir. Antonie van Leeuwenhoek 2013; 104:619–626 [View Article][PubMed]
    [Google Scholar]
  16. Park S, Park JM, Won SM, Bae KS, Yoon JH. Winogradskyella wandonensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2014; 64:1520–1525 [View Article][PubMed]
    [Google Scholar]
  17. Pinhassi J, Nedashkovskaya OI, Hagström A, Vancanneyt M. Winogradskyella rapida sp. nov., isolated from protein-enriched seawater. Int J Syst Evol Microbiol 2009; 59:2180–2184 [View Article][PubMed]
    [Google Scholar]
  18. Romanenko LA, Tanaka N, Frolova GM, Mikhailov VV. Winogradskyella arenosi sp. nov., a member of the family Flavobacteriaceae isolated from marine sediments from the Sea of Japan. Int J Syst Evol Microbiol 2009; 59:1443–1446 [View Article][PubMed]
    [Google Scholar]
  19. Yoon JH, Lee SY. Winogradskyella multivorans sp. nov., a polysaccharide-degrading bacterium isolated from seawater of an oyster farm. Antonie van Leeuwenhoek 2012; 102:231–238 [View Article][PubMed]
    [Google Scholar]
  20. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45:240–245 [View Article][PubMed]
    [Google Scholar]
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  22. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  23. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  26. Felsenstein J. Phylip (Phylogeny inference package) Version 3.5.c Department of Genetics, University of Washington, Seattle, USA: 1993
    [Google Scholar]
  27. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  28. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969 pp. 21–132 [CrossRef]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  30. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5:109–118 [View Article][PubMed]
    [Google Scholar]
  31. Lee JS, Lee KC, Pyun YR, Bae KS. Arthrobacter koreensis sp. nov., a novel alkalitolerant bacterium from soil. Int J Syst Evol Microbiol 2003; 53:1277–1280 [View Article][PubMed]
    [Google Scholar]
  32. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  33. Zobell CE. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 1941; 4:42–75
    [Google Scholar]
  34. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758[PubMed]
    [Google Scholar]
  35. Yamaguchi S, Yokoe M. A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 2000; 66:3337–3343 [View Article][PubMed]
    [Google Scholar]
  36. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  37. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology Press; 2007 pp. 335–386
    [Google Scholar]
  38. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993 [CrossRef]
    [Google Scholar]
  39. Bernardet JF, Nakagawa Y, Holmes B.Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  40. Klassen JL, Foght JM. Differences in carotenoid composition among Hymenobacter and related strains support a tree-like model of carotenoid evolution. Appl Environ Microbiol 2008; 74:2016–2022 [View Article][PubMed]
    [Google Scholar]
  41. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496[PubMed]
    [Google Scholar]
  42. CLSI Performance Standards for Antimicrobial Susceptibility Testing. 19th Informational Supplement. CLSI Document M100-S19 (ISBN 1–56238–690–5) Wayne, PA: Clinical and Laboratory Standards Institute; 2009
    [Google Scholar]
  43. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207 [CrossRef]
    [Google Scholar]
  44. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  45. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons Ltd; 1994 pp. 265–309
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.002161
Loading
/content/journal/ijsem/10.1099/ijsem.0.002161
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error