1887

Abstract

A novel Gram-stain-negative bacterium, strain S-MI1b, belonging to the genus Microvirga was isolated from a metal industry waste soil sample in Pirangut village, Pune District, Maharashtra, India. Cells were non-spore-forming, small rod-shapes, motile and strictly aerobic with light-pink colonies. The strain grew in 0–7.0 % (w/v) NaCl and at 25–45 °C, with optimal growth at 40 °C. The predominant fatty acids detected were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C19 : 0 cyclo ω8c. The predominant isoprenoid quinone was Q-10. The G+C content was 67.2 mol% and DNA–DNA relatedness values between strain S-MI1band Microvirga subterranea DSM 14364 and Microvirga aerophila 5420S-12 were 53.9 and 54.8 %, respectively. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain S-MI1b is a member of the genus Microvirga , with greatest sequence similarities of 97.7 and 97.4 % with M. subterranea DSM 14364 and M. aerophila 5420S-12, respectively. Phylogenetic analysis showed that strain S-MI1b forms a clade with the type strain of M. subterranea DSM 14364, and was readily distinguishable from it due to various phenotypic characteristics. The combination of genotypic and phenotypic data suggests that the isolate represents a novel species of the genus Microvirga , for which the name Microvirga indica sp. nov. is proposed. The type strain is S-MI1b (=NCIM-5595=KACC 18792=BCRC 80972).

Keyword(s): 16S rRNA , arsenite , FAME , Microvirga and phylogeny
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002157
2017-09-04
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3525.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002157&mimeType=html&fmt=ahah

References

  1. Kanso S, Patel BK. Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 2003;53:401–406 [CrossRef][PubMed]
    [Google Scholar]
  2. Takeda M, Suzuki I, Koizumi J. Balneomonas flocculans gen. nov., sp. nov., a new cellulose-producing member of the alpha-2 subclass of Proteobacteria. Syst Appl Microbiol 2004;27:139–145 [CrossRef][PubMed]
    [Google Scholar]
  3. Weon HY, Kwon SW, Son JA, Jo EH, Kim SJ et al. Description of Microvirga aerophila sp. nov. and Microvirga aerilata sp. nov., isolated from air, reclassification of Balneimonas flocculans Takeda et al. 2004 as Microvirga flocculans comb. nov. and emended description of the genus Microvirga. Int J Syst Evol Microbiol 2010;60:2596–2600 [CrossRef][PubMed]
    [Google Scholar]
  4. Zhang J, Song F, Xin YH, Zhang J, Fang C. Microvirga guangxiensis sp. nov., a novel alphaproteobacterium from soil, and emended description of the genus Microvirga. Int J Syst Evol Microbiol 2009;59:1997–2001 [CrossRef][PubMed]
    [Google Scholar]
  5. Ardley JK, Parker MA, de Meyer SE, Trengove RD, O'Hara GW et al. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 2012;62:2579–2588 [CrossRef][PubMed]
    [Google Scholar]
  6. Radl V, Simões-Araújo JL, Leite J, Passos SR, Martins LM et al. Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int J Syst Evol Microbiol 2014;64:725–730 [CrossRef][PubMed]
    [Google Scholar]
  7. Caputo A, Lagier JC, Azza S, Robert C, Mouelhi D et al. Microvirga massiliensis sp. nov., the human commensal with the largest genome. Microbiologyopen 2016;5:307–322 [CrossRef][PubMed]
    [Google Scholar]
  8. Safronova VI, Kuznetsova IG, Sazanova AL, Belimov AA, Andronov EE et al. Microvirga ossetica sp. nov., a species of rhizobia isolated from root nodules of the legume species Vicia alpestris Steven. Int J Syst Evol Microbiol 2017;67:94–100 [CrossRef][PubMed]
    [Google Scholar]
  9. Dahal RH, Kim J. Microvirga soli sp. nov., an alphaproteobacterium isolated from soil. Int J Syst Evol Microbiol 2017;67:127–132 [CrossRef][PubMed]
    [Google Scholar]
  10. Majumder A, Bhattacharyya K, Bhattacharyya S, Kole SC. Arsenic-tolerant, arsenite-oxidising bacterial strains in the contaminated soils of West Bengal, India. Sci Total Environ 2013;463-464:1006–1014 [CrossRef][PubMed]
    [Google Scholar]
  11. Cummings DE, Caccavo F, Fendorf S, Rosenzweig RF, Frankccavo JR et al. Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ Sci Technol 1999;33:723–729 [CrossRef]
    [Google Scholar]
  12. Zhang J, Zhou W, Liu B, He J, Shen Q et al. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil. Environ Sci Technol 2015;49:5956–5964 [CrossRef][PubMed]
    [Google Scholar]
  13. Green HH. Isolation and description of a bacterium causing oxidation of arsenite to arsenate in cattle-dipping baths. Rep Dir Vet S Afr 1918;6:593–599
    [Google Scholar]
  14. Muller D, Lièvremont D, Simeonova DD, Hubert JC, Lett MC. Arsenite oxidase aox genes from a metal-resistant β-proteobacterium. J Bacteriol 2003;185:135–141 [CrossRef][PubMed]
    [Google Scholar]
  15. Bachate SP, Khapare RM, Kodam KM. Oxidation of arsenite by two β-proteobacteria isolated from soil. Appl Microbiol Biotechnol 2012;93:2135–2145 [CrossRef][PubMed]
    [Google Scholar]
  16. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  17. Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 2001;Chapter 2:2.4.1–2.4.2 [CrossRef][PubMed]
    [Google Scholar]
  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  22. Martínez-Murcia AJ, Rodríguez-Valera F. The use of arbitrarily primed PCR (AP-PCR) to develop taxa specific DNA probes of known sequence. FEMS Microbiol Lett 1994;124:265–269 [CrossRef][PubMed]
    [Google Scholar]
  23. Inskeep WP, Macur RE, Hamamura N, Warelow TP, Ward SA et al. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environ Microbiol 2007;9:934–943 [CrossRef][PubMed]
    [Google Scholar]
  24. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News Lett 1990;20:1–6
    [Google Scholar]
  25. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
    [Google Scholar]
  26. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  27. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  28. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded Ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  29. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996;46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  30. Thorat MN, Mawlankar R, Sonalkar VV, Venkata Ramana V, Joseph N et al. Deinococcus enclensis sp. nov., isolated from a marine sediment sample. Antonie van Leeuwenhoek 2015;107:141–148 [CrossRef][PubMed]
    [Google Scholar]
  31. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  32. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  33. Loveland-Curtze J, Miteva VI, Brenchley JE. Evaluation of a new fluorimetric DNA-DNA hybridization method. Can J Microbiol 2011;57:250–255 [CrossRef][PubMed]
    [Google Scholar]
  34. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  35. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526[PubMed]
    [Google Scholar]
  36. Wayne LG, Brenner DJ, Colwell RR, Grimont PA, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002157
Loading
/content/journal/ijsem/10.1099/ijsem.0.002157
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error