1887

Abstract

A bacterial strain designated TFL-3 was isolated from sediment of the Yangtze River in Nanjing, Jiangsu province, China. Strain TFL-3 was Gram-staining-negative, non-spore-forming, rod-shaped and non-motile. Growth occurred at 10–40 °C (optimum 30 °C). Strain TFL-3 grew at pH 6.0–9.0 (optimum pH 7.0) and NaCl concentrations of 0–2.5 % (optimum 0.5 %). Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain TFL-3 belonged to the genus Chitinophaga and showed the highest sequence similarity to Chitinophaga barathri YLT18 (94.9 %). The DNA G+C content of strain TFL-3 was determined as 50.5±1.0 mol%. The major fatty acids (>10 %) were iso-C15 : 0, C16 : 1 ω5c and summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c). The predominant respiratory ubiquinone was MK-7. The polar lipid profile consisted of phosphatidylethanolamine, two unidentified aminolipids, two unidentified glycolipids and seven unidentified lipids. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain TFL-3 represents a novel species in the genus Chitinophaga , for which the name Chitinophaga sedimenti sp. nov. is proposed. The type strain is TFL-3 (=ACCC 19966=KCTC 52590).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002150
2017-08-31
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3485.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002150&mimeType=html&fmt=ahah

References

  1. Sangkhobol V, Skerman VBD. Chitinophaga, a new genus of chitinolytic myxobacteria. Int J Syst Evol Microbiol 1981;31:285–293
    [Google Scholar]
  2. Kämpfer P, Young CC, Sridhar KR, Arun AB, Lai WA et al. Transfer of [Flexibacter] sancti, [Flexibacter] filiformis, [Flexibacter] japonensis and [Cytophaga] arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov. Int J Syst Evol Microbiol 2006;56:2223–2228 [CrossRef][PubMed]
    [Google Scholar]
  3. Kämpfer P, Lodders N, Falsen E. Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov. Int J Syst Evol Microbiol 2011;61:518–523 [CrossRef][PubMed]
    [Google Scholar]
  4. Pankratov TA, Kulichevskaya IS, Liesack W, Dedysh SN. Isolation of aerobic, gliding, xylanolytic and laminarinolytic bacteria from acidic Sphagnum peatlands and emended description of Chitinophaga arvensicola Kampfer et al. 2006. Int J Syst Evol Microbiol 2006;56:2761–2764 [CrossRef][PubMed]
    [Google Scholar]
  5. Proença DN, Nobre MF, Morais PV. Chitinophaga costaii sp. nov., an endophyte of Pinus pinaster, and emended description of Chitinophaga niabensis. Int J Syst Evol Microbiol 2014;64:1237–1243 [CrossRef][PubMed]
    [Google Scholar]
  6. Zhang L, Liao S, Tan Y, Wang G, Wang D et al. Chitinophaga barathri sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2015;65:4233–4238 [CrossRef][PubMed]
    [Google Scholar]
  7. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester, UK: John Wiley & Sons Press; 1991; pp.115–175
    [Google Scholar]
  8. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  9. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  10. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  11. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969;18:1–32 [CrossRef]
    [Google Scholar]
  12. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  16. Bernardet JF, Nakagawa Y, Holmes B.Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  17. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982;44:992–993[PubMed]
    [Google Scholar]
  18. Zhang J, Chen SA, Zheng JW, Cai S, Hang BJ et al. Catellibacterium nanjingense sp. nov., a propanil-degrading bacterium isolated from activated sludge, and emended description of the genus Catellibacterium. Int J Syst Evol Microbiol 2012;62:495–499 [CrossRef][PubMed]
    [Google Scholar]
  19. Ohta H, Hattori T. Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie van Leeuwenhoek 1983;49:429–446[PubMed]
    [Google Scholar]
  20. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Woods WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology Press; 1994; pp.607–654
    [Google Scholar]
  21. Dong XZ, Cai MY. General Bacterial Identification System Handbook Beijing, China: Scientific Press; 2001; pp.377–385
    [Google Scholar]
  22. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  23. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology Press; pp.309–329
    [Google Scholar]
  24. Zhang L, Chen XL, Hu Q, Chen K, Yan X et al. Haoranjiania flava gen. nov., sp. nov., a new member of the family Chitinophagaceae, isolated from activated sludge. Int J Syst Evol Microbiol 2016;66:4686–4691 [CrossRef][PubMed]
    [Google Scholar]
  25. MIDI Sherlock Microbial Identification System, Operating Manual, Version 3.0 Newark, DE: MIDI, Inc; 1999
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI, Inc; 1990
    [Google Scholar]
  27. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003;49:345–349 [CrossRef][PubMed]
    [Google Scholar]
  28. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 2001
    [Google Scholar]
  29. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  30. Li L, Sun L, Shi N, Liu L, Guo H et al. Chitinophaga cymbidii sp. nov., isolated from Cymbidium goeringii roots. Int J Syst Evol Microbiol 2013;63:1800–1804 [CrossRef][PubMed]
    [Google Scholar]
  31. Weon HY, Yoo SH, Kim YJ, Son JA, Kim BY et al. Chitinophaga niabensis sp. nov. and Chitinophaga niastensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009;59:1267–1271 [CrossRef][PubMed]
    [Google Scholar]
  32. Lee JC, Whang KS. Chitinophaga ginsengihumi sp. nov., isolated from soil of ginseng rhizosphere. Int J Syst Evol Microbiol 2014;64:2599–2604 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002150
Loading
/content/journal/ijsem/10.1099/ijsem.0.002150
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error