1887

Abstract

An alkaliphilic and moderately halophilic strain characterized by optimal growth at pH 9.0–10.0 and 7 % (w/v) NaCl, and designated B16-24, was isolated from the rhizosphere soil of the bayonet grass at a soda pond in the Kiskunság National Park, Hungary. Cells of the strain were Gram-staining-positive, non-motile, straight rods, and formed central, ellipsoidal endospores with slightly swollen sporangia. The isolate was facultative anaerobic, catalase positive, oxidase negative, and contained a peptidoglycan of type A1γ based on -diaminopimelic acid. Menaquinone-7 (MK-7) was the predominant isoprenoid quinone, and anteiso-C the major cellular fatty acid. The DNA G+C content of strain B16-24 was 36.6 mol%. The 16S rRNA gene-based phylogenetic analysis revealed that the novel isolate had the greatest similarities to the type strains of Kh10-101 (97.8 %), 1139 (97.4 %), K1-25 (97.3 %) and N-1 (97.1 %). The DNA–DNA relatedness of strain B16-24 and the closely related species ranged between 24±6 % and 35±3 %. The distinctive phenotypic and genetic results of this study confirmed that strain B16-24 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is B16-24 (=DSM 29791=NCAIM B.02610).

Keyword(s): alkaliphilic , halophilic and soda soil
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002149
2017-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3490.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002149&mimeType=html&fmt=ahah

References

  1. Vedder A. Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingbodems. Antonie Leeuwenhoek J Microbiol Serol 1934; 1:141–147 [CrossRef]
    [Google Scholar]
  2. Nielsen P, Fritze D, Priest FG. Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 1995; 141:1745–1761 [View Article]
    [Google Scholar]
  3. Fritze D. Bacillus haloalkaliphilus sp. nov. Int J Syst Bacteriol 1996; 46:98–101 [View Article]
    [Google Scholar]
  4. Yumoto I, Yamaga S, Sogabe Y, Nodasaka Y, Matsuyama H et al. Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. Int J Syst Evol Microbiol 2003; 53:1531–1536 [View Article][PubMed]
    [Google Scholar]
  5. Yumoto I, Hirota K, Goto T, Nodasaka Y, Nakajima K. Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile. Int J Syst Evol Microbiol 2005; 55:907–911 [View Article][PubMed]
    [Google Scholar]
  6. Nowlan B, Dodia MS, Singh SP, Patel BK. Bacillus okhensis sp. nov., a halotolerant and alkalitolerant bacterium from an Indian saltpan. Int J Syst Evol Microbiol 2006; 56:1073–1077 [View Article][PubMed]
    [Google Scholar]
  7. Horikoshi K. Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 1999; 63:735–750[PubMed]
    [Google Scholar]
  8. Demirjian DC, Morís-Varas F, Cassidy CS. Enzymes from extremophiles. Curr Opin Chem Biol 2001; 5:144–151 [View Article][PubMed]
    [Google Scholar]
  9. Nogi Y, Takami H, Horikoshi K. Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 2005; 55:2309–2315 [View Article][PubMed]
    [Google Scholar]
  10. Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK et al. Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 2011; 38:769–790 [View Article][PubMed]
    [Google Scholar]
  11. Zhai L, Ma Y, Xue Y, Ma Y. Bacillus alkalicola sp. nov., an alkaliphilic, gram-positive bacterium isolated from Zhabuye Lake in Tibet, China. Curr Microbiol 2014; 69:311–316 [View Article][PubMed]
    [Google Scholar]
  12. Sorokin DY, van Pelt S, Tourova TP. Utilization of aliphatic nitriles under haloalkaline conditions by Bacillus alkalinitrilicus sp. nov. isolated from soda solonchak soil. FEMS Microbiol Lett 2008; 288:235–240 [View Article][PubMed]
    [Google Scholar]
  13. Borsodi AK, Pollák B, Kéki Z, Rusznyák A, Kovács AL et al. Bacillus alkalisediminis sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from sediment of extremely shallow soda ponds. Int J Syst Evol Microbiol 2011; 61:1880–1886 [View Article][PubMed]
    [Google Scholar]
  14. Borsodi AK, Márialigeti K, Szabó G, Palatinszky M, Pollák B et al. Bacillus aurantiacus sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from Hungarian soda lakes. Int J Syst Evol Microbiol 2008; 58:845–851 [View Article][PubMed]
    [Google Scholar]
  15. Vargas VA, Delgado OD, Hatti-Kaul R, Mattiasson B. Bacillus bogoriensis sp. nov., a novel alkaliphilic, halotolerant bacterium isolated from a Kenyan soda lake. Int J Syst Evol Microbiol 2005; 55:899–902 [View Article][PubMed]
    [Google Scholar]
  16. Vishnuvardhan Reddy S, Thirumala M, Farooq M. Bacillus caseinilyticus sp. nov., an alkali- and thermotolerant bacterium isolated from a soda lake. Int J Syst Evol Microbiol 2015; 65:2441–2446 [View Article][PubMed]
    [Google Scholar]
  17. Carrasco IJ, Márquez MC, Xue Y, Ma Y, Cowan DA et al. Bacillus chagannorensis sp. nov., a moderate halophile from a soda lake in Inner Mongolia, China. Int J Syst Evol Microbiol 2007; 57:2084–2088 [View Article][PubMed]
    [Google Scholar]
  18. Zhai L, Liao T, Xue Y, Ma Y. Bacillus daliensis sp. nov., an alkaliphilic, Gram-positive bacterium isolated from a soda lake. Int J Syst Evol Microbiol 2012; 62:949–953 [View Article][PubMed]
    [Google Scholar]
  19. Dou G, Liu H, He W, Ma Y. Bacillus lindianensis sp. nov., a novel alkaliphilic and moderately halotolerant bacterium isolated from saline and alkaline soils. Antonie van Leeuwenhoek 2016; 109:149–158 [View Article][PubMed]
    [Google Scholar]
  20. Reddy SV, Thirumala M, Farooq M, Sasikala C, Ramana CV. Bacillus lonarensis sp. nov., an alkalitolerant bacterium isolated from a soda lake. Arch Microbiol 2015; 197:27–34 [View Article][PubMed]
    [Google Scholar]
  21. Bárány A, Szili-Kovács T, Krett G, Füzy A, Márialigeti K et al. Metabolic activity and genetic diversity of microbial communities inhabiting the rhizosphere of halophyton plants. Acta Microbiol Immunol Hung 2014; 61:347–361 [View Article][PubMed]
    [Google Scholar]
  22. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: doi: 10.1099/ijsem.0.001755 [View Article][PubMed]
    [Google Scholar]
  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  27. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  28. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  29. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article][PubMed]
    [Google Scholar]
  30. Murray RGE, Doetsch RN, Robinov CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: ASM; 1994 pp. 21–41
    [Google Scholar]
  31. Borsodi AK, Micsinai A, Kovács G, Tóth E, Schumann P et al. Pannonibacter phragmitetus gen. nov., sp. nov., a novel alkalitolerant bacterium isolated from decomposing reed rhizomes in a Hungarian soda lake. Int J Syst Evol Microbiol 2003; 53:555–561 [View Article][PubMed]
    [Google Scholar]
  32. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press; 2003
    [Google Scholar]
  33. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: ASM; 1994 pp. 603–711
    [Google Scholar]
  34. Makk J, Homonnay ZG, Kéki Z, Nemes-Barnás K, Márialigeti K et al. Arenimonas subflava sp. nov., isolated from a drinking water network, and emended description of the genus Arenimonas. Int J Syst Evol Microbiol 2015; 65:1915–1921 [View Article][PubMed]
    [Google Scholar]
  35. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  36. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  37. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 1997; 47:1129–1133 [View Article][PubMed]
    [Google Scholar]
  38. Stead DE, Sellwood JE, Wilson J, Viney I. Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 1992; 72:315–321 [View Article]
    [Google Scholar]
  39. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:234–239 [View Article][PubMed]
    [Google Scholar]
  40. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  41. De Vos P. Order I. Bacillales Prévot 1953, 60AL. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology, Second Edition. Volume Three The Firmicutes USA: Springer; 2009 p. 20
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002149
Loading
/content/journal/ijsem/10.1099/ijsem.0.002149
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error