1887
Preview this article:
Zoom in
Zoomout

International Committee on Systematics of Prokaryotes Subcommittee for the Taxonomy of Rhizobium and Agrobacterium Minutes of the meeting, Budapest, 25 August 2016, Page 1 of 1

| /docserver/preview/fulltext/ijsem/67/7/2485_ijsem002144-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Keyword(s): Agrobacterium and Rhizobium
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002144
2017-08-04
2019-09-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2485.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002144&mimeType=html&fmt=ahah

References

  1. de Lajudie P, Martinez-Romero E. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Agrobacterium and Rhizobium Minutes of the meeting, 7 September 2014, Tenerife, Spain. Int J Syst Evol Microbiol 2017; 67: 516– 520 [CrossRef] [PubMed]
    [Google Scholar]
  2. Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C et al. Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 2014; 37: 208– 215 [CrossRef] [PubMed]
    [Google Scholar]
  3. Shi X, Li C, Zhao L, Si M, Zhu L et al. Rhizobium gei sp. nov., a bacterial endophyte of Geum aleppicum. Int J Syst Evol Microbiol 2016; 66: 4282– 4288 [CrossRef] [PubMed]
    [Google Scholar]
  4. de Meyer SE, Willems A. Multilocus sequence analysis of Bosea species and description of Bosea lupini sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., isolated from legumes. Int J Syst Evol Microbiol 2012; 62: 2505– 2510 [CrossRef] [PubMed]
    [Google Scholar]
  5. Safronova VI, Kuznetsova IG, Sazanova AL, Kimeklis AK, Belimov AA et al. Bosea vaviloviae sp. nov., a new species of slow-growing rhizobia isolated from nodules of the relict species Vavilovia formosa (Stev.) Fed. Antonie van Leeuwenhoek 2015; 107: 911– 920 [CrossRef] [PubMed]
    [Google Scholar]
  6. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 2015; 38: 84– 90 [CrossRef] [PubMed]
    [Google Scholar]
  7. Kuzmanović N, Puławska J, Prokić A, Ivanović M, Zlatković N et al. Agrobacterium arsenijevicii sp. nov., isolated from crown gall tumors on raspberry and cherry plum. Syst Appl Microbiol 2015; 38: 373– 378 [CrossRef] [PubMed]
    [Google Scholar]
  8. Tindall BJ. Agrobacterium radiobacter (Beijerinck and van Delden 1902) Conn 1942 has priority over Agrobacterium tumefaciens (Smith and Townsend 1907) Conn 1942 when the two are treated as members of the same species based on the principle of priority and Rule 23a, Note 1 as applied to the corresponding specific epithets. opinion 94. Judicial Commission of the International Committee on Systematics of Prokaryotes. Int J Syst Evol Microbiol 2014; 64: 3590– 3592 [CrossRef] [PubMed]
    [Google Scholar]
  9. Ramírez-Bahena MH, Vial L, Lassalle F, Diel B, Chapulliot D et al. Single acquisition of protelomerase gave rise to speciation of a large and diverse clade within the Agrobacterium/Rhizobium supercluster characterized by the presence of a linear chromid. Mol Phylogenet Evol 2014; 73: 202– 207 [CrossRef] [PubMed]
    [Google Scholar]
  10. Ormeño-Orrillo E, Servín-Garcidueñas LE, Rogel MA, González V, Peralta H et al. Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 2015; 38: 287– 291 [CrossRef] [PubMed]
    [Google Scholar]
  11. Xu L, Zhang Y, Deng ZS, Zhao L, Wei XL et al. Rhizobium qilianshanense sp. nov., a novel species isolated from root nodule of Oxytropis ochrocephala Bunge in China. Antonie van Leeuwenhoek 2013; 103: 559– 565 [CrossRef] [PubMed]
    [Google Scholar]
  12. Depoorter E, Bull MJ, Peeters C, Coenye T, Vandamme P et al. Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Appl Microbiol Biotechnol 2016; 100: 5215– 5229 [CrossRef] [PubMed]
    [Google Scholar]
  13. Estrada-de Los Santos P, Rojas-Rojas FU, Tapia-García EY, Vásquez-Murrieta MS, Hirsch AM. To split or not to split: an opinion on dividing the genus Burkholderia. Ann Microbiol 2016; 66: 1303– 1314 [CrossRef]
    [Google Scholar]
  14. Estrada-de Los Santos P, Vinuesa P, Martínez-Aguilar L, Hirsch AM, Caballero-Mellado J. Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. Curr Microbiol 2013; 67: 51– 60 [CrossRef] [PubMed]
    [Google Scholar]
  15. Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN et al. Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 2011; 24: 1276– 1288 [CrossRef] [PubMed]
    [Google Scholar]
  16. Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Para burkholderia gen. nov. harboring environmental species. Front Genet 2014; 5: 429 [CrossRef] [PubMed]
    [Google Scholar]
  17. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2015; 65: 2017– 2025 [CrossRef]
    [Google Scholar]
  18. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2015; 65: 2777– 2783 [CrossRef]
    [Google Scholar]
  19. Dobritsa AP, Samadpour M. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 2016; 66: 2836– 2846 [CrossRef] [PubMed]
    [Google Scholar]
  20. Eberl L, Vandamme P. Members of the genus Burkholderia: good and bad guys [version 1; referees: 3 approved]. F1000Research 2016; 5: 1007 [CrossRef]
    [Google Scholar]
  21. Weber CF, King GM. Volcanic soils as sources of novel Co-oxidizing Paraburkholderia and Burkholderia: Paraburkholderia hiiakae sp. nov., Paraburkholderia metrosideri sp. nov., Paraburkholderia paradisi sp. nov., Paraburkholderia peleae sp. nov., and Burkholderia alpina sp. nov. a member of the Burkholderia cepacia complex. Front Microbiol 2017; 8: Article 207 [CrossRef] [PubMed]
    [Google Scholar]
  22. Lopes-Santos L, Castro DBA, Ferreira-Tonin M, Corrêa DBA, Weir BS et al. Reassessment of the taxonomic position of Burkholderia andropogonis and description of Robbsia andropogonis gen. nov., comb. nov. Antonie van Leeuwenhoek 2017; 110: 727– 736 [CrossRef] [PubMed]
    [Google Scholar]
  23. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2015; doi: 10.1099/ijsem.0.000778 [CrossRef] [PubMed]
    [Google Scholar]
  24. Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bradley RS et al. Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 1991; 41: 582– 587 [CrossRef]
    [Google Scholar]
  25. Ramírez-Bahena MH, Flores-Félix JD, Chahboune R, Toro M, Velázquez E et al. Bradyrhizobium centrosemae (symbiovar centrosemae) sp. nov., Bradyrhizobium americanum (symbiovar phaseolarum) sp. nov. and a new symbiovar (tropici) of Bradyrhizobium viridifuturi establish symbiosis with Centrosema species native to America. Syst Appl Microbiol 2016; 39: 378– 383 [CrossRef] [PubMed]
    [Google Scholar]
  26. Wang R, Chang YL, Zheng WT, Zhang D, Zhang XX et al. Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst Appl Microbiol 2013; 36: 101– 105 [CrossRef] [PubMed]
    [Google Scholar]
  27. Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Parma MM, Melo IS et al. Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes. Int J Syst Evol Microbiol 2015; 65: 4424– 4433 [CrossRef] [PubMed]
    [Google Scholar]
  28. Yao Y, Sui XH, Zhang XX, Wang ET, Chen WX. Bradyrhizobium erythrophlei sp. nov. and Bradyrhizobium ferriligni sp. nov., isolated from effective nodules of Erythrophleum fordii. Int J Syst Evol Microbiol 2015; 65: 1831– 1837 [CrossRef] [PubMed]
    [Google Scholar]
  29. Li YH, Wang R, Zhang XX, Young JP, Wang ET et al. Bradyrhizobium guangdongense sp. nov. and Bradyrhizobium guangxiense sp. nov., isolated from effective nodules of peanut. Int J Syst Evol Microbiol 2015; 65: 4655– 4661 [CrossRef] [PubMed]
    [Google Scholar]
  30. da Silva K, de Meyer SE, Rouws LF, Farias EN, dos Santos MA et al. Bradyrhizobium ingae sp. nov., isolated from effective nodules of Inga Laurina grown in Cerrado soil. Int J Syst Evol Microbiol 2014; 64: 3395– 3401 [CrossRef] [PubMed]
    [Google Scholar]
  31. Lasse Grönemeyer J, Hurek T, Reinhold-Hurek B. Bradyrhizobium kavangense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of traditional Namibian pulses. Int J Syst Evol Microbiol 2015; 65: 4886– 4894 [CrossRef] [PubMed]
    [Google Scholar]
  32. Peix A, Ramírez-Bahena MH, Flores-Félix JD, Alonso de La Vega P, Rivas R et al. Revision of the taxonomic status of the species Rhizobium lupini and reclassification as Brady rhizobium lupini comb. nov. Int J Syst Evol Microbiol 2015; 65: 1213– 1219 [CrossRef] [PubMed]
    [Google Scholar]
  33. Silva FV, de Meyer SE, Simões-Araújo JL, Barbé TC, Xavier GR et al. Bradyrhizobium manausense sp. nov., isolated from effective nodules of Vigna unguiculata grown in Brazilian Amazonian rainforest soils. Int J Syst Evol Microbiol 2014; 64: 2358– 2363 [CrossRef] [PubMed]
    [Google Scholar]
  34. Zilli JE, Baraúna AC, da Silva K, de Meyer SE, Farias EN et al. Bradyrhizobium neotropicale sp. nov., isolated from effective nodules of Centrolobium paraense. Int J Syst Evol Microbiol 2014; 64: 3950– 3957 [CrossRef] [PubMed]
    [Google Scholar]
  35. Guerrouj K, Ruíz-Díez B, Chahboune R, Ramírez-Bahena MH, Abdelmoumen H et al. Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma. Syst Appl Microbiol 2013; 36: 218– 223 [CrossRef] [PubMed]
    [Google Scholar]
  36. Chahboune R, Carro L, Peix A, Ramírez-Bahena MH, Barrijal S et al. Bradyrhizobium rifense sp. nov. isolated from effective nodules of Cytisus villosus grown in the Moroccan Rif. Syst Appl Microbiol 2012; 35: 302– 305 [CrossRef] [PubMed]
    [Google Scholar]
  37. Yu X, Cloutier S, Tambong JT, Bromfield ES. Bradyrhizobium ottawaense sp. nov., a symbiotic nitrogen fixing bacterium from root nodules of soybeans in Canada. Int J Syst Evol Microbiol 2014; 64: 3202– 3207 [CrossRef] [PubMed]
    [Google Scholar]
  38. Grönemeyer JL, Chimwamurombe P, Reinhold-Hurek B. Bradyrhizobium subterraneum sp. nov. a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts. Int J Syst Evol Microbiol 2015; 65: 3241– 3247 [CrossRef]
    [Google Scholar]
  39. Durán D, Rey L, Navarro A, Busquets A, Imperial J et al. Bradyrhizobium valentinum sp. nov., isolated from effective nodules of Lupinus mariae-josephae, a lupine endemic of basic-lime soils in Eastern Spain. Syst Appl Microbiol 2014; 37: 336– 341 [CrossRef] [PubMed]
    [Google Scholar]
  40. Grönemeyer JL, Hurek T, Bünger W, Reinhold-Hurek B. Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis. Int J Syst Evol Microbiol 2016; 66: 62– 69 [CrossRef] [PubMed]
    [Google Scholar]
  41. Helene LC, Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Rogel MA et al. Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for green manure and environmental services. Int J Syst Evol Microbiol 2015; 65: 4441– 4448 [CrossRef] [PubMed]
    [Google Scholar]
  42. Durán D, Rey L, Mayo J, Zúñiga-Dávila D, Imperial J et al. Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. Int J Syst Evol Microbiol 2014; 64: 2072– 2078 [CrossRef] [PubMed]
    [Google Scholar]
  43. Lu JK, Dou YJ, Zhu YJ, Wang SK, Sui XH et al. Bradyrhizobium ganzhouense sp. nov., an effective symbiotic bacterium isolated from Acacia melanoxylon R. Br. nodules. Int J Syst Evol Microbiol 2014; 64: 1900– 1905 [CrossRef] [PubMed]
    [Google Scholar]
  44. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2016; 66: 2463– 2466 [CrossRef] [PubMed]
    [Google Scholar]
  45. Puławska J, Kuzmanović N, Willems A, Pothier JF. Pararhizobium polonicum sp. nov. isolated from tumors on stone fruit rootstocks. Syst Appl Microbiol 2016; 39: 164– 169 [CrossRef] [PubMed]
    [Google Scholar]
  46. Zhu YJ, Kun J, Chen YL, Wang SK, Sui XH et al. Mesorhizobium acaciae sp. nov., isolated from root nodules of Acacia melanoxylon R. Br. Int J Syst Evol Microbiol 2015; 65: 3558– 3563 [CrossRef] [PubMed]
    [Google Scholar]
  47. de Meyer SE, Tan HW, Andrews M, Heenan PB, Willems A. Mesorhizobium calcicola sp. nov., Mesorhizobium waitakense sp. nov., Mesorhizobium sophorae sp. nov., Mesorhizobium newzealandense sp. nov. and Mesorhizobium kowhaii sp. nov. isolated from Sophora root nodules in New Zealand. Int J Syst Evol Microbiol 2016; 66: 786– 795 [CrossRef] [PubMed]
    [Google Scholar]
  48. de Meyer SE, Tan HW, Heenan PB, Andrews M, Willems A. Mesorhizobium waimense sp. nov. isolated from Sophora longicarinata root nodules and Mesorhizobium cantuariense sp. nov. isolated from Sophora microphylla root nodules. Int J Syst Evol Microbiol 2015; 65: 3419– 3426 [CrossRef] [PubMed]
    [Google Scholar]
  49. Martínez-Hidalgo P, Ramírez-Bahena MH, Flores-Félix JD, Rivas R, Igual JM et al. Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as the type strain of Mesorhizobium erdmanii sp. nov. and ATCC 33669T as the type strain of Mesorhizobium jarvisii sp. nov. Int J Syst Evol Microbiol 2015; 65: 1703– 1708 [CrossRef] [PubMed]
    [Google Scholar]
  50. Martínez-Hidalgo P, Ramírez-Bahena MH, Flores-Félix JD, Igual JM, Sanjuán J et al. Reclassification of strains MAFF 303099T and R7A into Mesorhizobium japonicum sp. nov. Int J Syst Evol Microbiol 2016; 66: 4936– 4941 [CrossRef] [PubMed]
    [Google Scholar]
  51. Nguyen TM, Pham VH, Kim J, Sp Msoli. Mesorhizobium soli sp. nov., a novel species isolated from the rhizosphere of Robinia Pseudoacacia L. in South Korea by using a modified culture method. Antonie van Leeuwenhoek 2015; 108: 301– 310 [CrossRef] [PubMed]
    [Google Scholar]
  52. Román-Ponce B, Jing Zhang Y, Soledad Vásquez-Murrieta M, Hua Sui X, Feng Chen W et al. Rhizobium acidisoli sp. nov., isolated from root nodules of Phaseolus vulgaris in acid soils. Int J Syst Evol Microbiol 2016; 66: 398– 406 [CrossRef] [PubMed]
    [Google Scholar]
  53. Shamseldin A, Carro L, Peix A, Velázquez E, Moawad H et al. The symbiovar trifolii of Rhizobium bangladeshense and Rhizobium aegyptiacum sp. nov. nodulate Trifolium alexandrinum in Egypt. Syst Appl Microbiol 2016; 39: 275– 279 [CrossRef] [PubMed]
    [Google Scholar]
  54. Baraúna AC, Rouws LF, Simoes-Araujo JL, dos Reis Junior FB, Iannetta PP et al. Rhizobium altiplani sp. nov., isolated from effective nodules on Mimosa pudica growing in untypically alkaline soil in central Brazil. Int J Syst Evol Microbiol 2016; 66: 4118– 4124 [CrossRef] [PubMed]
    [Google Scholar]
  55. Sheu SY, Huang HW, Young CC, Chen WM. Rhizobium alvei sp. nov., isolated from a freshwater river. Int J Syst Evol Microbiol 2015; 65: 472– 478 [CrossRef] [PubMed]
    [Google Scholar]
  56. Zhang YJ, Zheng WT, Everall I, Young JP, Zhang XX et al. Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum. Int J Syst Evol Microbiol 2015; 65: 2960– 2967 [CrossRef] [PubMed]
    [Google Scholar]
  57. Mnasri B, Liu TY, Saidi S, Chen WF, Chen WX et al. Rhizobium azibense sp. nov., a nitrogen fixing bacterium isolated from root-nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 2014; 64: 1501– 1506 [CrossRef] [PubMed]
    [Google Scholar]
  58. Rashid MH, Young JP, Everall I, Clercx P, Willems A et al. Average nucleotide identity of genome sequences supports the description of Rhizobium lentis sp. nov., Rhizobium bangladeshense sp. nov. and Rhizobium binae sp. nov. from lentil (Lens culinaris) nodules. Int J Syst Evol Microbiol 2015; 65: 3037– 3045 [CrossRef] [PubMed]
    [Google Scholar]
  59. Liu TY, Li Y, Liu XX, Sui XH, Zhang XX et al. Rhizobium cauense sp. nov., isolated from root nodules of the herbaceous legume Kummerowia stipulacea grown in campus lawn soil. Syst Appl Microbiol 2012; 35: 415– 420 [CrossRef] [PubMed]
    [Google Scholar]
  60. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2015; 65: 741– 744 [CrossRef]
    [Google Scholar]
  61. Lin SY, Hung MH, Hameed A, Liu YC, Hsu YH et al. Rhizobium capsici sp. nov., isolated from root tumor of a green bell pepper (Capsicum annuum var. grossum) plant. Antonie van Leeuwenhoek 2015; 107: 773– 784 [CrossRef] [PubMed]
    [Google Scholar]
  62. Ribeiro RA, Martins TB, Ormeño-Orrillo E, Marçon Delamuta JR, Rogel MA et al. Rhizobium ecuadorense sp. nov., an indigenous N2-fixing symbiont of the Ecuadorian common bean (Phaseolus vulgaris L.) genetic pool. Int J Syst Evol Microbiol 2015; 65: 3162– 3169 [CrossRef] [PubMed]
    [Google Scholar]
  63. Parag B, Sasikala C, Ramana C, Ch S, Chv R. Molecular and culture dependent characterization of endolithic bacteria in two beach sand samples and description of Rhizobium endolithicum sp. nov. Antonie van Leeuwenhoek 2013; 104: 1235– 1244 [CrossRef] [PubMed]
    [Google Scholar]
  64. Gu T, Sun LN, Zhang J, Sui XH, Li SP. Rhizobium flavum sp. nov., a triazophos-degrading bacterium isolated from soil under the long-term application of triazophos. Int J Syst Evol Microbiol 2014; 64: 2017– 2022 [CrossRef]
    [Google Scholar]
  65. Torres Tejerizo G, Rogel MA, Ormeño-Orrillo E, Althabegoiti MJ, Nilsson JF et al. Rhizobium favelukesii sp. nov., isolated from the root nodules of alfalfa (Medicago sativa L). Int J Syst Evol Microbiol 2016; 66: 4451– 4457 [CrossRef] [PubMed]
    [Google Scholar]
  66. Yan J, Yan H, Liu LX, Chen WF, Zhang XX et al. Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil. Arch Microbiol 2017; 199: 97– 104 [CrossRef] [PubMed]
    [Google Scholar]
  67. Saïdi S, Ramírez-Bahena MH, Santillana N, Zúñiga D, Álvarez-Martínez E, Peix A et al. Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. Int J Syst Evol Microbiol 2014; 64: 242– 247 [CrossRef] [PubMed]
    [Google Scholar]
  68. Kittiwongwattana C, Thawai C. Rhizobium lemnae sp. nov., a bacterial endophyte of Lemna aequinoctialis. Int J Syst Evol Microbiol 2014; 64: 2455– 2460 [CrossRef] [PubMed]
    [Google Scholar]
  69. Grison CM, Jackson S, Merlot S, Dobson A, Grison C. Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator. Int J Syst Evol Microbiol 2015; 65: 1525– 1530 [CrossRef] [PubMed]
    [Google Scholar]
  70. Zhang XX, Gao JS, Cao YH, Sheirdil RA, Wang XC et al. Rhizobium oryzicola sp. nov., potential plant-growth-promoting endophytic bacteria isolated from rice roots. Int J Syst Evol Microbiol 2015; 65: 2931– 2936 [CrossRef] [PubMed]
    [Google Scholar]
  71. Khalid R, Zhang YJ, Ali S, Sui XH, Zhang XX et al. Rhizobium pakistanensis sp. nov., isolated from groundnut (Arachis hypogaea) nodules grown in Rainfed Pothwar, Pakistan. Antonie van Leeuwenhoek 2015; 107: 281– 290 [CrossRef] [PubMed]
    [Google Scholar]
  72. dall'agnol RF, Ribeiro RA, Delamuta JR, Ormeño-Orrillo E, Rogel MA et al. Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil. Int J Syst Evol Microbiol 2014; 64: 3222– 3229 [CrossRef] [PubMed]
    [Google Scholar]
  73. Rozahon M, Ismayil N, Hamood B, Erkin R, Abdurahman M et al. Rhizobium populi sp. nov., an endophytic bacterium isolated from Populus euphratica. Int J Syst Evol Microbiol 2014; 64: 3215– 3221 [CrossRef] [PubMed]
    [Google Scholar]
  74. Zhang XX, Tang X, Sheirdil RA, Sun L, Ma XT. Rhizobium rhizoryzae sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 2014; 64: 1373– 1377 [CrossRef] [PubMed]
    [Google Scholar]
  75. Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH et al. Rhizobium sophorae sp. nov. and Rhizobium sophoriradicis sp. nov., nitrogen-fixing rhizobial symbionts of the medicinal legume Sophora flavescens. Int J Syst Evol Microbiol 2015; 65: 497– 503 [CrossRef] [PubMed]
    [Google Scholar]
  76. Lin SY, Hsu YH, Liu YC, Hung MH, Hameed A et al. Rhizobium straminoryzae sp. nov., isolated from the surface of rice straw. Int J Syst Evol Microbiol 2014; 64: 2962– 2968 [CrossRef] [PubMed]
    [Google Scholar]
  77. Chen W, Sheng XF, He LY, Huang Z. Rhizobium yantingense sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol 2015; 65: 412– 417 [CrossRef] [PubMed]
    [Google Scholar]
  78. Li Y, Yan J, Yu B, Wang ET, Li X et al. Ensifer alkalisoli sp. nov. isolated from root nodules of Sesbania cannabina grown in saline-alkaline soils. Int J Syst Evol Microbiol 2016; 66: 5294– 5300 [CrossRef] [PubMed]
    [Google Scholar]
  79. Yan H, Yan J, Sui XH, Wang ET, Chen WX et al. Ensifer glycinis sp. nov., a rhizobial species associated with species of the genus Glycine. Int J Syst Evol Microbiol 2016; 66: 2910– 2916 [CrossRef] [PubMed]
    [Google Scholar]
  80. Safronova VI, Kuznetsova IG, Sazanova AL, Kimeklis AK, Belimov AA et al. Bosea vaviloviae sp. nov., a new species of slow-growing rhizobia isolated from nodules of the relict species Vavilovia formosa (Stev.) Fed. Antonie van Leeuwenhoek 2015; 107: 911– 920 [CrossRef] [PubMed]
    [Google Scholar]
  81. Sánchez M, Ramírez-Bahena MH, Peix A, Lorite MJ, Sanjuán J et al. Phyllobacterium loti sp. nov. isolated from nodules of Lotus corniculatus. Int J Syst Evol Microbiol 2014; 64: 781– 786 [CrossRef] [PubMed]
    [Google Scholar]
  82. Radl V, Simões-Araújo JL, Leite J, Passos SR, Martins LM et al. Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int J Syst Evol Microbiol 2014; 64: 725– 730 [CrossRef] [PubMed]
    [Google Scholar]
  83. Sheu SY, Chou JH, Bontemps C, Elliott GN, Gross E et al. Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil. Int J Syst Evol Microbiol 2012; 62: 2272– 2278 [CrossRef] [PubMed]
    [Google Scholar]
  84. Sheu SY, Chou JH, Bontemps C, Elliott GN, Gross E et al. Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp. Int J Syst Evol Microbiol 2013; 63: 435– 441 [CrossRef] [PubMed]
    [Google Scholar]
  85. de Meyer SE, Cnockaert M, Ardley JK, Trengove RD, Garau G et al. Burkholderia rhynchosiae sp. nov., isolated from Rhynchosia ferulifolia root nodules. Int J Syst Evol Microbiol 2013; 63: 3944– 3949 [CrossRef] [PubMed]
    [Google Scholar]
  86. de Meyer SE, Cnockaert M, Ardley JK, Maker G, Yates R et al. Burkholderia sprentiae sp. nov., isolated from Lebeckia ambigua root nodules. Int J Syst Evol Microbiol 2013; 63: 3950– 3957 [CrossRef] [PubMed]
    [Google Scholar]
  87. de Meyer SE, Cnockaert M, Ardley JK, van Wyk BE, Vandamme PA et al. Burkholderia dilworthii sp. nov., isolated from Lebeckia ambigua root nodules. Int J Syst Evol Microbiol 2014; 64: 1090– 1095 [CrossRef] [PubMed]
    [Google Scholar]
  88. Mavengere NR, Ellis AG, Le Roux JJ. Burkholderia aspalathi sp. nov., isolated from root nodules of the South African legume Aspalathus abietina Thunb. Int J Syst Evol Microbiol 2014; 64: 1906– 1912 [CrossRef] [PubMed]
    [Google Scholar]
  89. Martínez-Aguilar L, Salazar-Salazar C, Méndez RD, Caballero-Mellado J, Hirsch AM et al. Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris. Antonie van Leeuwenhoek 2013; 104: 1063– 1071 [CrossRef] [PubMed]
    [Google Scholar]
  90. Bournaud C, Moulin L, Cnockaert M, Faria S, Prin Y et al. Paraburkholderia piptadeniae sp. nov. and Paraburkholderia ribeironis sp. nov., two root-nodulating symbiotic species of Piptadenia gonoacantha in Brazil. Int J Syst Evol Microbiol 2017; 67: 432– 440 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002144
Loading
/content/journal/ijsem/10.1099/ijsem.0.002144
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error