1887

Abstract

Three filamentous gliding bacteria from the German Collection of Microorganisms and Cell Cultures, Hp g11, Hp g471 and Hp g472, were subjected to a phylogenetic analysis. These organisms had previously been classified as members of the genus Herpetosiphon based on their growth physiology and morphology. However, a taxonomic assignment at the species level had not been carried out. Analysis of 16S rRNA sequences now confirmed the close relationship of strain Hp g472 to Herpetosiphon aurantiacus DSM 785 (98.6 % nucleotide identity) and Herpetosiphon geysericola DSM 7119 (97.7 %). The results of DNA–DNA hybridization experiments further implied that strain Hp g472 should be classified as a distinct species. The DNA G+C content of strain Hp g472 was 49.9 mol%. The major quinone was MK-10 and the predominant cellular fatty acids were C18 : 1, C16 : 1 and C16 : 0. Based on phenotypic, chemotaxonomic and phylogenetic data it was concluded that strain Hp g472 represents a novel species of the genus Herpetosiphon , for which the name Herpetosiphon gulosus sp. nov. is proposed. The type strain is Hp g472 (=DSM 52871=NBRC 112829). In contrast to Hp g472, the strains Hp g11 and Hp g471 exhibited closest 16S rRNA gene sequence similarity (>99 %) with ‘Herpetosiphon giganteus’ Hp a2. The distinctive genotypic and phenotypic properties of the latter supported the revival of the name as Herpetosiphon giganteus (ex Reichenbach & Golecki, 1975) sp. nov., nom. rev. We propose the previously deposited reference strain DSM 589=NBRC 112828 as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002141
2017-07-26
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2476.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002141&mimeType=html&fmt=ahah

References

  1. Holt JG, Lewin RA. Herpetosiphon aurantiacus gen. et sp. n., a new filamentous gliding organism. J Bacteriol 1968; 95: 2407– 2408 [PubMed]
    [Google Scholar]
  2. Oyaizu H, Debrunner-Vossbrinck B, Mandelco L, Studier JA, Woese CR. The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. Syst Appl Microbiol 1987; 9: 47– 53 [CrossRef] [PubMed]
    [Google Scholar]
  3. Garrity GM, Holt JG, Phylum BVI. Chloroflexi phy. nov. In Boone DR, Castenholz RW, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 1 New York: Springer; 2001; pp. 427– 446 [CrossRef]
    [Google Scholar]
  4. Lee N, Reichenbach H. The genus Herpetosiphon. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes, New York: Springer; 2006; pp. 854– 877 [CrossRef]
    [Google Scholar]
  5. Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 1997; 47: 590– 592 [CrossRef] [PubMed]
    [Google Scholar]
  6. Sly LI, Taghavi M, Fegan M. Phylogenetic heterogeneity within the genus Herpetosiphon: transfer of the marine species Herpetosiphon cohaerens, Herpetosiphon nigricans and Herpetosiphon persicus to the genus Lewinella gen. nov. in the Flexibacter-Bacteroides-Cytophaga phylum. Int J Syst Bacteriol 1998; 48 Pt 3: 731– 737 [CrossRef] [PubMed]
    [Google Scholar]
  7. Jürgens UJ, Meissner J, Reichenbach H, Weckesser J. L-ornithine containing peptidoglycan-polysaccharide complex from the cell wall of the gliding bacterium Herpetosiphon aurantiacus. FEMS Microbiol Lett 1989; 60: 247– 250 [CrossRef]
    [Google Scholar]
  8. Lewin RA. New Herpetosiphon species (Flexibacterales). Can J Microbiol 1970; 16: 517– 520 [CrossRef] [PubMed]
    [Google Scholar]
  9. Quinn GR, Skerman VBD. Herpetosiphon—Nature’s scavenger?. Curr Microbiol 1980; 4: 57– 62 [CrossRef]
    [Google Scholar]
  10. Jurkevitch E. Predatory behaviors in bacteria — diversity and transitions. Microbe Magazine 2007; 2: 67– 73 [CrossRef]
    [Google Scholar]
  11. Kastner S, Müller S, Natesan L, König GM, Guthke R et al. 4-Hydroxyphenylglycine biosynthesis in Herpetosiphon aurantiacus: a case of gene duplication and catalytic divergence. Arch Microbiol 2012; 194: 557– 566 [CrossRef] [PubMed]
    [Google Scholar]
  12. Mir Mohseni M, Höver T, Barra L, Kaiser M, Dorrestein PC et al. Discovery of a mosaic-like biosynthetic assembly line with a decarboxylative off-loading mechanism through a combination of genome mining and imaging. Angew Chem Int Ed Engl 2016; 55: 13611– 13614 [CrossRef] [PubMed]
    [Google Scholar]
  13. Nakano C, Oshima M, Kurashima N, Hoshino T. Identification of a new diterpene biosynthetic gene cluster that produces O-methylkolavelool in Herpetosiphon aurantiacus. Chembiochem 2015; 16: 772– 781 [CrossRef] [PubMed]
    [Google Scholar]
  14. Nett M, Erol O, Kehraus S, Köck M, Krick A et al. Siphonazole, an unusual metabolite from Herpetosiphon sp. Angew Chem Int Ed Engl 2006; 45: 3863– 3867 [CrossRef] [PubMed]
    [Google Scholar]
  15. Schieferdecker S, Domin N, Hoffmeier C, Bryant DA, Roth M et al. Structure and absolute configuration of auriculamide, a natural product from the predatory bacterium Herpetosiphon aurantiacus. Eur J Org Chem 2015; 14: 3057– 3062 [CrossRef]
    [Google Scholar]
  16. Kiss H, Nett M, Domin N, Martin K, Maresca JA et al. Complete genome sequence of the filamentous gliding predatory bacterium Herpetosiphon aurantiacus type strain (114-95T). Stand Genomic Sci 2011; 5: 356– 370 [CrossRef] [PubMed]
    [Google Scholar]
  17. Ward LM, Hemp J, Pace LA, Fischer WW. Draft genome sequence of Herpetosiphon geysericola GC-42, a nonphototrophic member of the Chloroflexi class Chloroflexia. Genome Announc 2015; 3: e01352-15 15 [CrossRef] [PubMed]
    [Google Scholar]
  18. Korp J, Vela Gurovic MS, Nett M. Antibiotics from predatory bacteria. Beilstein J Org Chem 2016; 12: 594– 607 [CrossRef] [PubMed]
    [Google Scholar]
  19. Schieferdecker S, König S, Weigel C, Dahse HM, Werz O et al. Structure and biosynthetic assembly of gulmirecins, macrolide antibiotics from the predatory bacterium Pyxidicoccus fallax. Chemistry 2014; 20: 15933– 15940 [CrossRef] [PubMed]
    [Google Scholar]
  20. Xiao Y, Wei X, Ebright R, Wall D. Antibiotic production by myxobacteria plays a role in predation. J Bacteriol 2011; 193: 4626– 4633 [CrossRef] [PubMed]
    [Google Scholar]
  21. Reichenbach H, Golecki JR. The fine structure of Herpetosiphon, and a note on the taxonomy of the genus. Arch Microbiol 1975; 102: 281– 291 [CrossRef] [PubMed]
    [Google Scholar]
  22. Harwardt R, Maier E, Reichenbach H, Weckesser J, Benz R. Channel-forming (Porin) activity in Herpetosiphon aurantiacus Hp a2. J Bacteriol 2004; 186: 6667– 6670 [CrossRef] [PubMed]
    [Google Scholar]
  23. Sasser M. Bacterial identification by gas chromatographic analysis of fatty acid methyl esters GC-FAME. MIDI Technical Note 2006
    [Google Scholar]
  24. Cole JK, Gieler BA, Heisler DL, Palisoc MM, Williams AJ et al. Kallotenue papyrolyticum gen. nov., sp. nov., a cellulolytic and filamentous thermophile that represents a novel lineage (Kallotenuales ord. nov., Kallotenuaceae fam. nov.) within the class Chloroflexia. Int J Syst Evol Microbiol 2013; 63: 4675– 4682 [CrossRef] [PubMed]
    [Google Scholar]
  25. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  26. Seccareccia I, Kost C, Nett M. Quantitative analysis of Lysobacter predation. Appl Environ Microbiol 2015; 81: 7098– 7105 [CrossRef] [PubMed]
    [Google Scholar]
  27. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3: 208– IN1 [CrossRef]
    [Google Scholar]
  28. Cashion P, Holder-Franklin MA, Mccully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977; 81: 461– 466 [CrossRef] [PubMed]
    [Google Scholar]
  29. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  30. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
    [Google Scholar]
  31. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4: 184– 192 [CrossRef] [PubMed]
    [Google Scholar]
  32. Lane DJ. Nucleic acid techniques in bacterial systematics. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp. 115– 174
    [Google Scholar]
  33. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
    [Google Scholar]
  34. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  35. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  36. Guindon S, Delsuc F, Dufayard JF, Gascuel O. Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 2009; 537: 113– 137 [CrossRef] [PubMed]
    [Google Scholar]
  37. Takahashi K, Nei M. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol 2000; 17: 1251– 1258 [CrossRef] [PubMed]
    [Google Scholar]
  38. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp. 21– 132 [CrossRef]
    [Google Scholar]
  39. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32: 1363– 1371 [CrossRef] [PubMed]
    [Google Scholar]
  40. Morgan AD, Maclean RC, Hillesland KL, Velicer GJ. Comparative analysis of Myxococcus predation on soil bacteria. Appl Environ Microbiol 2010; 76: 6920– 6927 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002141
Loading
/content/journal/ijsem/10.1099/ijsem.0.002141
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error