1887

Abstract

Three filamentous gliding bacteria from the German Collection of Microorganisms and Cell Cultures, Hp g11, Hp g471 and Hp g472, were subjected to a phylogenetic analysis. These organisms had previously been classified as members of the genus based on their growth physiology and morphology. However, a taxonomic assignment at the species level had not been carried out. Analysis of 16S rRNA sequences now confirmed the close relationship of strain Hp g472 to DSM 785 (98.6 % nucleotide identity) and DSM 7119 (97.7 %). The results of DNA–DNA hybridization experiments further implied that strain Hp g472 should be classified as a distinct species. The DNA G+C content of strain Hp g472 was 49.9 mol%. The major quinone was MK-10 and the predominant cellular fatty acids were C, C and C. Based on phenotypic, chemotaxonomic and phylogenetic data it was concluded that strain Hp g472 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Hp g472 (=DSM 52871=NBRC 112829). In contrast to Hp g472, the strains Hp g11 and Hp g471 exhibited closest 16S rRNA gene sequence similarity (>99 %) with ‘’ Hp a2. The distinctive genotypic and phenotypic properties of the latter supported the revival of the name as ( Reichenbach & Golecki, 1975) sp. nov., nom. rev. We propose the previously deposited reference strain DSM 589=NBRC 112828 as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002141
2017-07-01
2020-09-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/7/2476.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002141&mimeType=html&fmt=ahah

References

  1. Holt JG, Lewin RA. Herpetosiphon aurantiacus gen. et sp. n., a new filamentous gliding organism. J Bacteriol 1968;95:2407–2408[PubMed]
    [Google Scholar]
  2. Oyaizu H, Debrunner-Vossbrinck B, Mandelco L, Studier JA, Woese CR. The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. Syst Appl Microbiol 1987;9:47–53 [CrossRef][PubMed]
    [Google Scholar]
  3. Garrity GM, Holt JG, Phylum BVI. Chloroflexi phy. nov. In Boone DR, Castenholz RW, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 1 New York: Springer; 2001; pp.427–446[CrossRef]
    [Google Scholar]
  4. Lee N, Reichenbach H. The genus Herpetosiphon. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes, New York: Springer; 2006; pp.854–877[CrossRef]
    [Google Scholar]
  5. Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 1997;47:590–592 [CrossRef][PubMed]
    [Google Scholar]
  6. Sly LI, Taghavi M, Fegan M. Phylogenetic heterogeneity within the genus Herpetosiphon: transfer of the marine species Herpetosiphon cohaerens, Herpetosiphon nigricans and Herpetosiphon persicus to the genus Lewinella gen. nov. in the Flexibacter-Bacteroides-Cytophaga phylum. Int J Syst Bacteriol 1998;48 Pt 3:731–737 [CrossRef][PubMed]
    [Google Scholar]
  7. Jürgens UJ, Meissner J, Reichenbach H, Weckesser J. L-ornithine containing peptidoglycan-polysaccharide complex from the cell wall of the gliding bacterium Herpetosiphon aurantiacus. FEMS Microbiol Lett 1989;60:247–250 [CrossRef]
    [Google Scholar]
  8. Lewin RA. New Herpetosiphon species (Flexibacterales). Can J Microbiol 1970;16:517–520 [CrossRef][PubMed]
    [Google Scholar]
  9. Quinn GR, Skerman VBD. Herpetosiphon—Nature’s scavenger?. Curr Microbiol 1980;4:57–62 [CrossRef]
    [Google Scholar]
  10. Jurkevitch E. Predatory behaviors in bacteria — diversity and transitions. Microbe Magazine 2007;2:67–73 [CrossRef]
    [Google Scholar]
  11. Kastner S, Müller S, Natesan L, König GM, Guthke R et al. 4-Hydroxyphenylglycine biosynthesis in Herpetosiphon aurantiacus: a case of gene duplication and catalytic divergence. Arch Microbiol 2012;194:557–566 [CrossRef][PubMed]
    [Google Scholar]
  12. Mir Mohseni M, Höver T, Barra L, Kaiser M, Dorrestein PC et al. Discovery of a mosaic-like biosynthetic assembly line with a decarboxylative off-loading mechanism through a combination of genome mining and imaging. Angew Chem Int Ed Engl 2016;55:13611–13614 [CrossRef][PubMed]
    [Google Scholar]
  13. Nakano C, Oshima M, Kurashima N, Hoshino T. Identification of a new diterpene biosynthetic gene cluster that produces O-methylkolavelool in Herpetosiphon aurantiacus. Chembiochem 2015;16:772–781 [CrossRef][PubMed]
    [Google Scholar]
  14. Nett M, Erol O, Kehraus S, Köck M, Krick A et al. Siphonazole, an unusual metabolite from Herpetosiphon sp. Angew Chem Int Ed Engl 2006;45:3863–3867 [CrossRef][PubMed]
    [Google Scholar]
  15. Schieferdecker S, Domin N, Hoffmeier C, Bryant DA, Roth M et al. Structure and absolute configuration of auriculamide, a natural product from the predatory bacterium Herpetosiphon aurantiacus. Eur J Org Chem 2015;14:3057–3062[CrossRef]
    [Google Scholar]
  16. Kiss H, Nett M, Domin N, Martin K, Maresca JA et al. Complete genome sequence of the filamentous gliding predatory bacterium Herpetosiphon aurantiacus type strain (114-95T). Stand Genomic Sci 2011;5:356–370 [CrossRef][PubMed]
    [Google Scholar]
  17. Ward LM, Hemp J, Pace LA, Fischer WW. Draft genome sequence of Herpetosiphon geysericola GC-42, a nonphototrophic member of the Chloroflexi class Chloroflexia. Genome Announc 2015;3:e01352-1515 [CrossRef][PubMed]
    [Google Scholar]
  18. Korp J, Vela Gurovic MS, Nett M. Antibiotics from predatory bacteria. Beilstein J Org Chem 2016;12:594–607 [CrossRef][PubMed]
    [Google Scholar]
  19. Schieferdecker S, König S, Weigel C, Dahse HM, Werz O et al. Structure and biosynthetic assembly of gulmirecins, macrolide antibiotics from the predatory bacterium Pyxidicoccus fallax. Chemistry 2014;20:15933–15940 [CrossRef][PubMed]
    [Google Scholar]
  20. Xiao Y, Wei X, Ebright R, Wall D. Antibiotic production by myxobacteria plays a role in predation. J Bacteriol 2011;193:4626–4633 [CrossRef][PubMed]
    [Google Scholar]
  21. Reichenbach H, Golecki JR. The fine structure of Herpetosiphon, and a note on the taxonomy of the genus. Arch Microbiol 1975;102:281–291 [CrossRef][PubMed]
    [Google Scholar]
  22. Harwardt R, Maier E, Reichenbach H, Weckesser J, Benz R. Channel-forming (Porin) activity in Herpetosiphon aurantiacus Hp a2. J Bacteriol 2004;186:6667–6670 [CrossRef][PubMed]
    [Google Scholar]
  23. Sasser M. Bacterial identification by gas chromatographic analysis of fatty acid methyl esters GC-FAME. MIDI Technical Note 2006
    [Google Scholar]
  24. Cole JK, Gieler BA, Heisler DL, Palisoc MM, Williams AJ et al. Kallotenue papyrolyticum gen. nov., sp. nov., a cellulolytic and filamentous thermophile that represents a novel lineage (Kallotenuales ord. nov., Kallotenuaceae fam. nov.) within the class Chloroflexia. Int J Syst Evol Microbiol 2013;63:4675–4682 [CrossRef][PubMed]
    [Google Scholar]
  25. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  26. Seccareccia I, Kost C, Nett M. Quantitative analysis of Lysobacter predation. Appl Environ Microbiol 2015;81:7098–7105 [CrossRef][PubMed]
    [Google Scholar]
  27. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–IN1 [CrossRef]
    [Google Scholar]
  28. Cashion P, Holder-Franklin MA, Mccully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977;81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  29. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  30. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  31. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  32. Lane DJ. Nucleic acid techniques in bacterial systematics. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.115–174
    [Google Scholar]
  33. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  34. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  35. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  36. Guindon S, Delsuc F, Dufayard JF, Gascuel O. Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 2009;537:113–137 [CrossRef][PubMed]
    [Google Scholar]
  37. Takahashi K, Nei M. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol 2000;17:1251–1258 [CrossRef][PubMed]
    [Google Scholar]
  38. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132[CrossRef]
    [Google Scholar]
  39. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  40. Morgan AD, Maclean RC, Hillesland KL, Velicer GJ. Comparative analysis of Myxococcus predation on soil bacteria. Appl Environ Microbiol 2010;76:6920–6927 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002141
Loading
/content/journal/ijsem/10.1099/ijsem.0.002141
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error