1887

Abstract

A Gram-stain-negative, non-motile, aerobic and rod-shaped bacterial strain, designated H-12, was isolated from a sea squirt () collected from Tsingtao Port, Jiaozhou Bay, China, and its taxonomic position was investigated. Strain H-12 grew optimally at 25–30 °C, at pH 7.0–8.0 and in the presence of 3.0–4.0 % (w/v) NaCl. The 16S rRNA gene sequence of strain H-12 exhibited the highest similarity to that of the type strain of (95.3 %). A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain H-12 clustered with the type strain of The predominant ubiquinone in strain H-12 was identified as Q-10. The major fatty acids of strain H-12 were Cω7 and Cω7 11-methyl. The major polar lipids detected in strain H-12 were phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, one unidentified aminolipid, two unidentified phospholipids and five unidentified lipids. The DNA G+C content of strain H-12 was 52.7 mol%. On the basis of phylogenetic, chemotaxonomic and phenotypic properties, strain H-12 is considered to represent a novel species within the genus , for which the name sp. nov. is proposed. The type strain is H-12 (=KCTC 52581=CGMCC 1.15880).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002140
2017-09-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3462.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002140&mimeType=html&fmt=ahah

References

  1. Teramoto M, Nishijima M. Amylibacter marinus gen. nov., sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2014;64:4016–4020 [CrossRef][PubMed]
    [Google Scholar]
  2. Yoon JH, Lee SY, Jung YT, Lee JS, Lee KC et al. Litorisediminicola beolgyonensis gen. nov., sp. nov., isolated from a coastal sediment. Int J Syst Evol Microbiol 2013;63:2025–2031 [CrossRef][PubMed]
    [Google Scholar]
  3. Park S, Park JM, Lee KC, Bae KS, Yoon JH et al. Boseongicola aestuarii gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014;64:2618–2624 [CrossRef][PubMed]
    [Google Scholar]
  4. Chen Z, Liu Y, Liu LZ, Zhong ZP, Liu ZP et al. Cribrihabitans marinus gen. nov., sp. nov., isolated from a biological filter in a marine recirculating aquaculture system. Int J Syst Evol Microbiol 2014;64:1257–1263 [CrossRef][PubMed]
    [Google Scholar]
  5. Won SM, Park S, Park JM, Kim BC, Yoon JH et al. Pseudohalocynthiibacter aestuariivivens gen. nov., sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2015;65:1509–1514 [CrossRef][PubMed]
    [Google Scholar]
  6. Li AH, Zhou YG. Frigidibacter albus gen. nov., sp. nov., a novel member of the family Rhodobacteraceae isolated from lake water. Int J Syst Evol Microbiol 2015;65:1199–1206 [CrossRef][PubMed]
    [Google Scholar]
  7. Chen Z, Zhang J, Lei X, Lai Q, Yang L et al. Mameliella phaeodactyli sp. nov., a member of the family Rhodobacteraceae isolated from the marine algae Phaeodactylum tricornutum. Int J Syst Evol Microbiol 2015;65:1617–1621 [CrossRef][PubMed]
    [Google Scholar]
  8. Yang Y, Sun J, Tang K, Lin D, Li C et al. Ponticoccus lacteus sp. nov. of the family Rhodobacteraceae, isolated from surface seawater. Int J Syst Evol Microbiol 2015;65:1247–1250 [CrossRef][PubMed]
    [Google Scholar]
  9. Thongphrom C, Kim JH, Yoon JH, Bora N, Kim W et al. Marimonas arenosa gen. nov., sp. nov., isolated from sea sand. Int J Syst Evol Microbiol 2017;67:121–126 [CrossRef][PubMed]
    [Google Scholar]
  10. Sun F, Du Y, Liu X, Lai Q, Shao Z et al. Halovulum dunhuangense gen. nov., sp. nov., isolated from a saline terrestrial spring. Int J Syst Evol Microbiol 2015;65:2810–2816 [CrossRef][PubMed]
    [Google Scholar]
  11. Wang L, Liu Y, Shi X, Wang Y, Zheng Y et al. Xuhuaishuia manganoxidans gen. nov., sp. nov., a manganese-oxidizing bacterium isolated from deep-sea sediments from the Pacific Polymetallic Nodule Province. Int J Syst Evol Microbiol 2016;66:1521–1526 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim YO, Park S, Kim H, Park DS, Nam BH et al. Halocynthiibacter namhaensis gen. nov., sp. nov., a novel alphaproteobacterium isolated from sea squirt Halocynthia roretzi. Antonie van Leeuwenhoek 2014;105:881–889 [CrossRef][PubMed]
    [Google Scholar]
  13. Park S, Park JM, Kang CH, Yoon JH. Aliiroseovarius pelagivivens gen. nov., sp. nov., isolated from seawater, and reclassification of three species of the genus Roseovarius as Aliiroseovarius crassostreae comb. nov., Aliiroseovarius halocynthiae comb. nov. and Aliiroseovarius sediminilitoris comb. nov. Int J Syst Evol Microbiol 2015;65:2646–2652 [CrossRef][PubMed]
    [Google Scholar]
  14. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007; pp.19–33
    [Google Scholar]
  15. Gao X, Zhang Z, Dai X, Zhang XH. Hyunsoonleella pacifica sp. nov., isolated from seawater of South Pacific Gyre. Int J Syst Evol Microbiol 2015;65:1155–1159 [CrossRef][PubMed]
    [Google Scholar]
  16. Tindall BJ, Sikorski J, Smibert RA. Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007; pp.330–393
    [Google Scholar]
  17. Phillips I. Cowan and Steel's Manual for the Identification of Medical Bacteria Cambridge University Press: 1993
    [Google Scholar]
  18. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1988;19:1–67[CrossRef]
    [Google Scholar]
  19. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963;85:1183–1184[PubMed]
    [Google Scholar]
  20. Yoon JH, Lee KC, Kho YH, Kang KH, Kim CJ et al. Halomonas alimentaria sp. nov., isolated from Jeotgal, a traditional korean fermented seafood. Int J Syst Evol Microbiol 2002;52:123–130 [CrossRef][PubMed]
    [Google Scholar]
  21. Ausubel FM, Brent R, Kingston RE. Short Protocols in Molecular Biology: A Compendium of Methods From Current Protocols in Molecular Biology New York: Wiley; 1995
    [Google Scholar]
  22. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  23. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  29. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
    [Google Scholar]
  30. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  31. Collins MD, Shah HN. Fatty acid, menaquinone and polar lipid composition of Rothia dentocariosa. Arch Microbiol 1984;137:247–249 [CrossRef]
    [Google Scholar]
  32. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002140
Loading
/content/journal/ijsem/10.1099/ijsem.0.002140
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error