1887

Abstract

A Gram-stain-positive, non-motile, rod-shaped bacterium, designated TUM BP 140423000-2250 (=DSM 100836=LMG 29073), was isolated from spoiled beer. This bacterium did not form spores, and was catalase-negative and facultatively anaerobic. Its taxonomic position was determined in a polyphasic study. The 16S rRNA gene sequence similarity data showed that the strain belonged to the genus with the nearest neighbours being DCY50 (sequence similarity 99.5 %), THK-V8 (99.2 %) and LMG 11984 (98.7 %). Sequence comparisons of additional phylogenetic markers, and , confirmed the 16S rRNA gene sequence tree topology. The maximum sequence similarity was 92.3 % with THK-V8. The DNA G+C content of the isolate was 50.0 mol%. The DNA–DNA relatedness showed that strain TUM BP 140423000-2250 could be clearly distinguished from DCY 50 (30.8±0.4 %) and THK-V8 (23.6±5.9 %). The major fatty acids were Cω9, summed feature 7 (comprised of C cyclo ω10/Cω6) and C. Based on phenotypic and genotypic studies, the authors propose classifying the new isolate as a representative of a novel species of the genus , sp. nov. The type strain is deposited at the Research Centre Weihenstephan for Brewing and Food Quality as TUM BP 140423000-2250 (=DSM 100836=LMG 29073).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002139
2017-09-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3452.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002139&mimeType=html&fmt=ahah

References

  1. Iijima K, Suzuki K, Asano S, Kuriyama H, Kitagawa Y. Isolation and identification of potential Beer-Spoilage Pediococcus inopinatus and beer-spoilage Lactobacillus backi strains carrying the horA and horC gene clusters. J Inst Brew 2007;113:96–101 [CrossRef]
    [Google Scholar]
  2. Haakensen M, Pittet V, Morrow K, Schubert A, Ferguson J et al. Ability of novel ATP-binding cassette multidrug resistance genes to predict growth of Pediococcus isolates in beer. J Am Soc Brew Chem 2009;67:170–176
    [Google Scholar]
  3. Back W. Farbatlas und Handbuch der Getränkebiologievol. 1 Nürnberg: Hans Carl Verlag; 1994
    [Google Scholar]
  4. Suzuki K, Iijima K, Sakamoto K, Sami M, Yamashita H. A review of hop resistance in beer spoilage lactic acid bacteria. J Inst Brew 2006;112:173–191 [CrossRef]
    [Google Scholar]
  5. Sakamoto K, Konings WN. Beer spoilage bacteria and hop resistance. Int J Food Microbiol 2003;89:105–124 [CrossRef][PubMed]
    [Google Scholar]
  6. Rainbow C. Beer spoilage lactic acid bacteria. In Carr JG, Cutting CV, Whiting GC. (editors) Lactic Acid Bacteria in Beverages and Food London: Academic Press; 1973
    [Google Scholar]
  7. Bokulich NA, Bamforth CW. The microbiology of malting and brewing. Microbiol Mol Biol Rev 2013;77:157–172 [CrossRef][PubMed]
    [Google Scholar]
  8. Bohak I, Thelen K, Beimfohr C. Description of Lactobacillus backi sp. nov., an obligate beer-spoiling bacterium. Monatsschr Brauwiss 2006;78 82
    [Google Scholar]
  9. Corsetti A, Settanni L, van Sinderen D, Felis GE, Dellaglio F et al. Lactobacillus rossii sp. nov., isolated from wheat sourdough. Int J Syst Evol Microbiol 2005;55:35–40 [CrossRef][PubMed]
    [Google Scholar]
  10. Ehrmann MA, Preissler P, Danne M, Vogel RF. Lactobacillus paucivorans sp. nov., isolated from a brewery environment. Int J Syst Evol Microbiol 2010;60:2353–2357 [CrossRef][PubMed]
    [Google Scholar]
  11. Tohno M, Kitahara M, Irisawa T, Masuda T, Uegaki R et al. Description of Lactobacillus iwatensis sp. nov., isolated from orchardgrass (Dactylis glomerata L.) silage, and Lactobacillus backii sp. nov. Int J Syst Evol Microbiol 2013;63:3854–3860 [CrossRef][PubMed]
    [Google Scholar]
  12. Koob J, Jacob F, Methner F-J, Hutzler M. Lactobacillus sp. brewery isolate: a new threat to the brewing industry?. Brewing Science 2016;69:42–49
    [Google Scholar]
  13. Back W. Sekundärkontaminationen im Abfüllbereich. Brauwelt 1994;16:686–695
    [Google Scholar]
  14. Koob J, Jacob F, Grammer M, Riedl R, Hutzler M. PCR-Analysen bierschädlicher Bakterien 2012 und 2013. Brauwelt 2014;10:288–290
    [Google Scholar]
  15. Hutzler M, Koob J, Grammer M, Riedl R, Jacob F. Statistische auswertung der PCR-analyse bierschädlicher Bakterien in den Jahren 2010 und 2011. Brauwelt 2012;152:546–547
    [Google Scholar]
  16. Back W, Breu S, Weigand C. Infektionsursachen Im Jahre 1987. Brauwelt 1988;31/32:1358–1362
    [Google Scholar]
  17. Bui TP, Kim YJ, In JG, Yang DC. Lactobacillus koreensis sp. nov., isolated from the traditional Korean food kimchi. Int J Syst Evol Microbiol 2011;61:772–776 [CrossRef][PubMed]
    [Google Scholar]
  18. Vancanneyt M, Naser SM, Engelbeen K, de Wachter M, van der Meulen R et al. Reclassification of Lactobacillus brevis strains LMG 11494 and LMG 11984 as Lactobacillus parabrevis sp. nov. Int J Syst Evol Microbiol 2006;56:1553–1557 [CrossRef][PubMed]
    [Google Scholar]
  19. Yi EJ, Yang JE, Lee JM, Park Y, Park SY et al. Lactobacillus yonginensis sp. nov., a lactic acid bacterium with ginsenoside converting activity isolated from Kimchi. Int J Syst Evol Microbiol 2013;63:3274–3279 [CrossRef][PubMed]
    [Google Scholar]
  20. de Man JC, Rogosa M, Sharpe ME. A medium for the cultivation of lactobacilli. J Appl Bacteriol 1960;23:130–135 [CrossRef]
    [Google Scholar]
  21. Harrigan WF. Laboratory Methods in Food Microbiology, 3rd ed. London: Academic Press; 1998
    [Google Scholar]
  22. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982;44:992–993[PubMed]
    [Google Scholar]
  23. Back W. Farbatlas und Handbuch der Getränkebiologievol. 2 Nürnberg: Hans Carl Verlag; 2000
    [Google Scholar]
  24. Cashion P, Holder-Franklin MA, Mccully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977;81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  25. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  26. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  27. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  28. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  29. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586[PubMed]
    [Google Scholar]
  30. Rhuland LE, Work E, Denman RF, Hoare DS. The behavior of the isomers of α,β-diaminopimelic acid on paper chromatograms. J Am Chem Soc 1955;77:4844–4846 [CrossRef]
    [Google Scholar]
  31. Schleifer KH, Seidl PH. Chemical composition and structure of murein. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.201–220
    [Google Scholar]
  32. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:407–477[PubMed]
    [Google Scholar]
  33. Schumann P. Peptidoglycan structure. In Rainey F, Oren A. (editors) Methods in Microbiologyvol. 38 London: Taxonomy of Prokaryotes. Academic Press; 2011; pp.101–129
    [Google Scholar]
  34. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  35. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  36. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–155
    [Google Scholar]
  37. Stackebrandt E, Goodfellow M. (editors) Nucleic acid techniques in bacterial systematics New York: John Wiley & Sons; 1991
    [Google Scholar]
  38. Ji N, Peng B, Wang G, Wang S, Peng X. Universal primer PCR with DGGE for rapid detection of bacterial pathogens. J Microbiol Methods 2004;57:409–413 [CrossRef][PubMed]
    [Google Scholar]
  39. Polz MF, Cavanaugh CM. Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 1998;64:3724–3730[PubMed]
    [Google Scholar]
  40. Löffler FE, Sun Q, Li J, Tiedje JM. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol 2000;66:1369–1374 [CrossRef][PubMed]
    [Google Scholar]
  41. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007;57:2777–2789 [CrossRef][PubMed]
    [Google Scholar]
  42. Svec P, Vancanneyt M, Koort J, Naser SM, Hoste B et al. Enterococcus devriesei sp. nov., associated with animal sources. Int J Syst Evol Microbiol 2005;55:2479–2484 [CrossRef][PubMed]
    [Google Scholar]
  43. Svec P, Vancanneyt M, Devriese LA, Naser SM, Snauwaert C et al. Enterococcus aquimarinus sp. nov., isolated from sea water. Int J Syst Evol Microbiol 2005;55:2183–2187 [CrossRef][PubMed]
    [Google Scholar]
  44. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005;151:2141–2150 [CrossRef][PubMed]
    [Google Scholar]
  45. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  46. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  47. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004;101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
  48. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  49. Kumar S, Nei M, Dudley J, Tamura K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 2008;9:299–306 [CrossRef][PubMed]
    [Google Scholar]
  50. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  51. Schleifer KH, Ludwig W. Phylogeny of the Genus Lactobacillus and related genera. Syst Appl Microbiol 1995;18:461–467 [CrossRef]
    [Google Scholar]
  52. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad Hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  53. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  54. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  55. Kim M, Hs O, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes (vol 64, pg 346, 2014). Int J Syst Evol Microbiol 1825;2014:64
    [Google Scholar]
  56. Jeske O, Schüler M, Schumann P, Schneider A, Boedeker C et al. Planctomycetes do possess a peptidoglycan cell wall. Nat Commun 2015;6:7116 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002139
Loading
/content/journal/ijsem/10.1099/ijsem.0.002139
Loading

Data & Media loading...

Supplements

Supplementary File 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error