1887

Abstract

Sixteen isolates of Gram-reaction-negative, motile, violet-pigmented bacteria were isolated from bogs in West Virginia and Maine, USA. 16S rRNA gene sequences and fatty acid analysis revealed a high degree of relatedness among the isolates, and genome sequencing of two isolates, IIBBL 14B-1 and IIBBL 37-2 (from West Virginia and Maine, respectively), revealed highly similar genomic sequences. The average nucleotide identity (gANI) calculated for these two isolates was found to be in excess of 99 %, but did not exceed 88 % when comparing either isolate with genomic sequences of ATCC 12472, DSM 19808, ND17, PRAA4-1, MWU205 or CBMAI 310. Collectively, gANI and 16S rRNA gene sequence comparisons suggested that isolates IIBBL 14B-1 and IIBBL 37-2 were most closely related to , but represented a distinct species. We propose the name sp. nov. for this taxon; the type strain is IIBBL 14B-1 (=NRRL B-67130=JCM 31882).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002127
2017-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3417.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002127&mimeType=html&fmt=ahah

References

  1. Martin PA, Gundersen-Rindal D, Blackburn M, Buyer J. Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int J Syst Evol Microbiol 2007; 57:993–999 [View Article][PubMed]
    [Google Scholar]
  2. Young CC, Arun AB, Lai WA, Chen WM, Chou JH et al. Chromobacterium aquaticum sp. nov., isolated from spring water samples. Int J Syst Evol Microbiol 2008; 58:877–880 [View Article][PubMed]
    [Google Scholar]
  3. Han XY, Han FS, Segal J. Chromobacterium haemolyticum sp. nov., a strongly haemolytic species. Int J Syst Evol Microbiol 2008; 58:1398–1403 [View Article][PubMed]
    [Google Scholar]
  4. Kämpfer P, Busse HJ, Scholz HC. Chromobacterium piscinae sp. nov. and Chromobacterium pseudoviolaceum sp. nov., from environmental samples. Int J Syst Evol Microbiol 2009; 59:2486–2490 [View Article][PubMed]
    [Google Scholar]
  5. Soby SD, Gadagkar SR, Contreras C, Caruso FL. Chromobacterium vaccinii sp. nov., isolated from native and cultivated cranberry (Vaccinium macrocarpon Ait.) bogs and irrigation ponds. Int J Syst Evol Microbiol 2013; 63:1840–1846 [View Article][PubMed]
    [Google Scholar]
  6. Menezes CB, Tonin MF, Corrêa DB, Parma M, de Melo IS et al. Chromobacterium amazonense sp. nov. isolated from water samples from the Rio Negro, Amazon, Brazil. Antonie van Leeuwenhoek 2015; 107:1057–1063 [View Article][PubMed]
    [Google Scholar]
  7. Zhou S, Guo X, Wang H, Kong D, Wang Y et al. Chromobacterium rhizoryzae sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 2016; 66:3890–3896 [View Article][PubMed]
    [Google Scholar]
  8. Vöing K, Harrison A, Soby SD. Draft genome sequence of Chromobacterium vaccinii, a potential biocontrol agent against mosquito (Aedes aegypti) larvae. Genome Announc 2015; 3:e00477-1515 [View Article][PubMed]
    [Google Scholar]
  9. Keeble JR, Cross T. An improved medium for the enumeration of Chromobacterium in Soil and Water. J Appl Bacteriol 1977; 43:325–327 [View Article]
    [Google Scholar]
  10. Eid J, Fehr A, Gray J, Luong K, Lyle J et al. Real-time DNA sequencing from single polymerase molecules. Science 2009; 323:133–138 [View Article][PubMed]
    [Google Scholar]
  11. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article][PubMed]
    [Google Scholar]
  12. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  14. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  15. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  16. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article][PubMed]
    [Google Scholar]
  17. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  19. Felsenstein J. PHYLIP - Phylogeny Inference package (Version 3.2). Cladistics 1989; 5:164–166
    [Google Scholar]
  20. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002127
Loading
/content/journal/ijsem/10.1099/ijsem.0.002127
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error