1887

Abstract

is a complex and tough genus to differentiate, and its morphological plasticity makes it taxonomically complicated. Its cryptic diversity and almost no distinguishable morphological characteristics make this genus incredibly heterogeneous to evaluate on taxonomic scales. The strain NOS, isolated from a eutrophic water body, is being described as a new genus with the strain showing motile hormogonia with gas vesicles as an atypical feature, which is currently considered as the diacritical feature of the genus but should be subjected to critical evaluation in the near future. The phylogenetic placement of along with some other related sequences of clearly separated this clade from with high bootstrap support and robust topology in all the methods tested, thus providing strong proof of the taxa being representative of a new genus which morphologically appears to be -like. Subsequent phylogenetic assessment using the L, A, C1 and A genes was done with the aim of facilitating future multi-locus studies on the proposed genus for better taxonomic clarity and resolution. Folding of the 16S–23S internal transcribed spacer region and subsequent comparisons with members of the genera , , , , , , and gave entirely new secondary structures for the D1-D1′ and box-B helix. Clear and separate clustering from supports the establishment of gen. nov. with the type species being sp. nov. in accordance with the International Code of Nomenclature for algae, fungi and plants.

Keyword(s): 16S rRNA , Cyanobacteria , ITS and Nostoc
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002112
2017-09-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3329.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002112&mimeType=html&fmt=ahah

References

  1. Komárek J, Anagnostidis K. Modern approach to the classification system of the cyanophytes 4 - Nostocales. Algol Stud 1989;56:247–345
    [Google Scholar]
  2. Rippka R, Castenholz RW, Herdman M. Subsection IV (Formerly Nostocales Castenholz 1989b sensu Rippka, Deruelles, Waterbury, Herdman and Stanier 1979). In Boone DR, Castenholz RW. (editors) Bergey’s Manual of Systematic Bacteriology New York, NY: Springer-Verlag; 2001; pp.562–566
    [Google Scholar]
  3. Bornet É, Flahault C. Revision des Nostocacées hétérocystées continues dans les principaux herbiers de France (quatrié me et dernier fragment). Ann Sci Nat Bot 1888;7:177–262
    [Google Scholar]
  4. Komárek J. Cyanoprokaryota 3. Heterocytous genera. In Gärtner G, Krienitz L, Schagerl M. (editors) Süβwasserflora Von Mitteleuropa/Freshwater Flora of Central Europe Heidelberg: Springer; 2013; pp.1130
    [Google Scholar]
  5. Mateo P, Perona E, Berrendero E, Leganés F, Martín M et al. Life cycle as a stable trait in the evaluation of diversity of Nostoc from biofilms in rivers. FEMS Microbiol Ecol 2011;76:185–198 [CrossRef][PubMed]
    [Google Scholar]
  6. Rajaniemi P, Hrouzek P, Kastovská K, Willame R, Rantala A et al. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int J Syst Evol Microbiol 2005;55:11–26 [CrossRef][PubMed]
    [Google Scholar]
  7. Hrouzek P, Ventura S, Lukešová A, Mugnai MA, Turicchia S et al. Diversity of soil Nostoc strains: phylogenetic and phenotypic variability. Arch Hydrobiol Suppl Algol Stud 2005;117:251–264 [CrossRef]
    [Google Scholar]
  8. Papaefthimiou D, Hrouzek P, Mugnai MA, Lukesova A, Turicchia S et al. Differential patterns of evolution and distribution of the symbiotic behaviour in nostocacean cyanobacteria. Int J Syst Evol Microbiol 2008;58:553–564 [CrossRef][PubMed]
    [Google Scholar]
  9. Řeháková K, Johansen JR, Casamatta DA, Xuesong L, Vincent J. Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. Nov. Phycologia 2007;46:481–502 [CrossRef]
    [Google Scholar]
  10. Fernández-Martínez MA, de Los Ríos A, Sancho LG, Pérez-Ortega S. Diversity of endosymbiotic Nostoc in Gunnera magellanica from Tierra del Fuego, Chile [corrected]. Microb Ecol 2013;66:335–350 [CrossRef][PubMed]
    [Google Scholar]
  11. Hrouzek P, Lukesova A, Mares J, Ventura S. Description of the cyanobacterial genus Desmonostoc gen. nov. including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the genus Nostoc. Fottea 2013;13:201–213 [CrossRef]
    [Google Scholar]
  12. Genuário DB, Vaz MG, Hentschke GS, Sant'anna CL, Fiore MF. Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. Int J Syst Evol Microbiol 2015;65:663–675 [CrossRef][PubMed]
    [Google Scholar]
  13. Genuário DB, Andreote AP, Vaz MG, Fiore MF. Heterocyte-forming cyanobacteria from Brazilian saline-alkaline lakes. Mol Phylogenet Evol 2017;109:105–112 [CrossRef][PubMed]
    [Google Scholar]
  14. Han D, Fan Y, Hu Z. An evaluation of four phylogenetic markers in Nostoc: implications for cyanobacterial phylogenetic studies at the intrageneric level. Curr Microbiol 2009;58:170–176 [CrossRef][PubMed]
    [Google Scholar]
  15. Singh P, Shaikh ZM, Gaysina LA, Suradkar A, Samanta U. New species of Nostoc (cyanobacteria) isolated from Pune, India, using morphological, ecological and molecular attributes. Plant Syst Evol 2016;302:1381–1394 [CrossRef]
    [Google Scholar]
  16. Johansen JR, Kovacik L, Casamatta DA, Iková KF, Kaštovský J. Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia 2011;92:283–302 [CrossRef]
    [Google Scholar]
  17. American Public Health Association (APHA) Standard Methods for the Examination of Water and Waste Water Washington, DC: 2012
    [Google Scholar]
  18. Rippka R, Stanier RY, Deruelles J, Herdman M, Waterbury JB. Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. Microbiology 1979;111:1–61 [CrossRef]
    [Google Scholar]
  19. Desikachary TV. Cyanophyta New Delhi: ICAR monographs on algae; 1959
    [Google Scholar]
  20. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989;17:7843–7853 [CrossRef][PubMed]
    [Google Scholar]
  21. Gkelis S, Rajaniemi P, Vardaka E, Moustaka-Gouni M, Lanaras T et al. Limnothrix redekei (van goor) Meffert (Cyanobacteria) strains from lake Kastoria, Greece form a separate phylogenetic group. Microb Ecol 2005;49:176–182 [CrossRef][PubMed]
    [Google Scholar]
  22. Singh P, Fatma A, Mishra AK. Molecular phylogeny and evogenomics of heterocystous cyanobacteria using rbcl gene sequence data. Ann Microbiol 2015;65:799–807 [CrossRef]
    [Google Scholar]
  23. Singh P, Singh SS, Aboal M, Mishra AK. Decoding cyanobacterial phylogeny and molecular evolution using an evonumeric approach. Protoplasma 2015;252:519–535 [CrossRef][PubMed]
    [Google Scholar]
  24. Głowacka J, Szefel-Markowska M, Waleron M, Łojkowska E, Waleron K. Detection and identification of potentially toxic cyanobacteria in polish water bodies. Acta Biochim Pol 2011;58:321–333[PubMed]
    [Google Scholar]
  25. Fewer D. Molecular evidence for the antiquity of group I introns interrupting transfer RNA genes in cyanobacteria. M.Sc. Thesis Göttingen: Universität zu Göttingen; 2001
    [Google Scholar]
  26. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  28. Xia X. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 2013;30:1720–1728 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  33. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  34. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  35. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003;31:3406–3415 [CrossRef][PubMed]
    [Google Scholar]
  36. Genuário DB, Silva-Stenico ME, Welker M, Beraldo Moraes LA, Fiore MF. Characterization of a microcystin and detection of microcystin synthetase genes from a Brazilian isolate of Nostoc. Toxicon 2010;55:846–854 [CrossRef][PubMed]
    [Google Scholar]
  37. Lukesova A, Johansen JR, Martin MP, Casamatta DA, Lukesova A et al. Aulosira bohemensis sp. nov.: further phylogenetic uncertainty at the base of the Nostocales (Cyanobacteria). Phycologia 2009;48:118–129 [CrossRef]
    [Google Scholar]
  38. Kaštovský J, Berrendero-Gomez E, Hladil J, Johansen JR. Cyanocohniella calida gen. nov. et spec. nov. (Cyanobacteria: Aphanizomenonaceae) a new cyanobacterium from the thermal springs from Karlovy Vary, Czech Republic. Phytotaxa 2014;181:279–292[CrossRef]
    [Google Scholar]
  39. Singh P, Minj RA, Kunui K, Shaikh ZM, Suradkar A et al. A new species of Scytonema isolated from Bilaspur, Chhattisgarh, India. J Syst Evol 2016;54:519–527 [CrossRef]
    [Google Scholar]
  40. Boyer SL, Flechtner VR, Johansen JR. Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 2001;18:1057–1069 [CrossRef][PubMed]
    [Google Scholar]
  41. Boyer SL, Johansen JR, Flechtner VR. Characterization of the 16S rRNA gene and associated 16S-23S ITS region in Microcoleus: evidence for the presence of cryptic species in desert soils. J Phycol 2002;38:1222–1235[CrossRef]
    [Google Scholar]
  42. Johansen JR, Casamatta DA. Recognizing cyanobacterial diversity through adoption of a new species paradigm. Arch Hydrobiol Suppl Algol Stud 2005;117:71–93 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002112
Loading
/content/journal/ijsem/10.1099/ijsem.0.002112
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error