1887

Abstract

The novel Gram-negative, aerobic, non-motile, non-spore-forming, short-rod bacterium, strain C7, was isolated from a seawater sample from Menai Straits (Wales, UK) and characterized. Phylogenetic analysis of 16S rRNA gene sequences showed that this strain represented a distinct lineage within the Roseobacter clade of family Rhodobacteracea within Alphaproteobacteria . The members of the genera Pontivivens ( Pontivivens insulae GYSW-23), Celeribacter ( Celeribacter manganoxidans DY2-5), Donghicola ( Donghicola eburneus SW-277), Roseovarius ( Roseovarius halotolerans HJ50 and Roseovarius pacificus 81-2), Cribrihabitans ( Cribrihabitans marinus CZ-AM5) and Aestuariihabitans ( Aestuariihabitans beolgyonensis BB-MW15) were the closest relatives with 16S rRNA gene sequence identities between 93.4 and 95.6 %. Strain C7 could utilize a restricted number of complex substrates with a preference for yeast extract and tryptone, which is consistent with earlier observations that peptides may serve as an important energy and carbon source for bacteria from the Roseobacter clade. Growth occurred in the absence of sodium ions. The isolate C7 is a mesophilic bacterium that optimally grows at 20 °C. The strain can grow under microaerophilic conditions. The major fatty acid was C18 : 1 cis d11. The only detected ubiquinone was Q10. The polar lipids of strain C7 were phosphatidylglycerol, two unknown aminolipids and three unknown lipids. The DNA G+C content of the strain was 60.0 mol%. Based on the results of the morphological, physiological and phylogenetic analyses, the new genus, Monaibacterium gen. nov., to include the new species Monaibacterium marinum sp. nov., is proposed. Strain C7 (=DSM 100241, =LMG 28800) is the type and only strain of M. marinum.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002111
2017-08-25
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3310.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002111&mimeType=html&fmt=ahah

References

  1. Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol 2005;71:5665–5677 [CrossRef][PubMed]
    [Google Scholar]
  2. Wagner-Döbler I, Biebl H. Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 2006;60:255–280 [CrossRef][PubMed]
    [Google Scholar]
  3. Brinkhoff T, Giebel HA, Simon M. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 2008;189:531–539 [CrossRef][PubMed]
    [Google Scholar]
  4. Slightom RN, Buchan A. Surface colonization by marine roseobacters: integrating genotype and phenotype. Appl Environ Microbiol 2009;75:6027–6037 [CrossRef][PubMed]
    [Google Scholar]
  5. Shiba T. Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 1991;14:140–145 [CrossRef]
    [Google Scholar]
  6. Garrity GM, Bell JA, Lilburn T. Taxonomic outline of the prokaryotes. In: Bergey’s Manual of Systematic Bacteriology 2004; Release 5.0http://www.bergeys.org/outlines/bergeysoutline_5_2004.pdf
    [Google Scholar]
  7. Young A. 1995; The Menai Strait – A proposed marine nature reserve. British Marine Life Study Society (Vernal Glaucus). www.glaucus.org.uk/Menai.htm [accessed 19 April 2012]
  8. Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT. Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 1995;45:116–123 [CrossRef][PubMed]
    [Google Scholar]
  9. Smibert RM, Krieg NR. General characterization. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA. et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp.409–443
    [Google Scholar]
  10. Baumann P, Baumann L. The marine Gram-negative eubacteria; genera Photobacterium, Beneckea, Alteromonas, Pseudomonas and Alcaligenes. In Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG. (editors) The Prokaryotes Berlin: Springer; 1981; pp.1302–1330
    [Google Scholar]
  11. Widdel F, Kohring G, Mayer F. Studies in sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp.nov. and Desulfonema magnum sp. nov. Arch Microbiol 1983;134:286–294[CrossRef]
    [Google Scholar]
  12. Golyshina OV, Pivovarova TA, Karavaiko GI, Kondratéva TF, Moore ER et al. Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 2000;50:997–1006 [CrossRef][PubMed]
    [Google Scholar]
  13. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  14. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  15. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  16. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  17. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  18. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007; pp.330–393
    [Google Scholar]
  19. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  20. Park S, Won SM, Park JM, Jung YT, Yoon JH. Pontivivens insulae gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2015;65:2896–2902 [CrossRef][PubMed]
    [Google Scholar]
  21. Wang L, Liu Y, Wang Y, Dai X, Zhang XH. Celeribacter manganoxidans sp. nov., a manganese-oxidizing bacterium isolated from deep-sea sediment of a polymetallic nodule province. Int J Syst Evol Microbiol 2015;65:4180–4185 [CrossRef][PubMed]
    [Google Scholar]
  22. Yoon JH, Kang SJ, Oh TK. Donghicola eburneus gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 2007;57:73–76 [CrossRef][PubMed]
    [Google Scholar]
  23. Wang B, Tan T, Shao Z. Roseovarius pacificus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2009;59:1116–1121 [CrossRef][PubMed]
    [Google Scholar]
  24. Oh YS, Lim HJ, Cha IT, Im WT, Yoo JS et al. Roseovarius halotolerans sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2009;59:2718–2723 [CrossRef][PubMed]
    [Google Scholar]
  25. Chen Z, Liu Y, Liu LZ, Zhong ZP, Liu ZP et al. Cribrihabitans marinus gen. nov., sp. nov., isolated from a biological filter in a marine recirculating aquaculture system. Int J Syst Evol Microbiol 2014;64:1257–1263 [CrossRef][PubMed]
    [Google Scholar]
  26. Yoon JH, Park S, Jung YT. Aestuariihabitans beolgyonensis gen. nov., sp. nov., a novel alphaproteobacterium isolated from tidal flat sediment. Antonie van Leeuwenhoek 2013;104:217–224 [CrossRef][PubMed]
    [Google Scholar]
  27. Morrison WR, Smith LM. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J Lipid Res 1964;5:600–608[PubMed]
    [Google Scholar]
  28. Lane DJ. 16S/23S sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics NY: John Willey and Sons; 1991; pp.148–163
    [Google Scholar]
  29. Wright ES, Yilmaz LS, Noguera DR. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 2012;78:717–725 [CrossRef][PubMed]
    [Google Scholar]
  30. Hall TA. Biological sequence alignment editor for Win95/98/NT/SK/XP. Nucl Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  31. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  32. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  33. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  34. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  35. Evans GL, Hardman-Mountford NJ, Hartnoll RG, Kennington K, Mitchelson-Jacob EG et al. Long-term environmental studies in the Irish Sea: a review Scientific Report No. 02. 17th November, 2003. Defra Contract CDEP 84/5/311 2003
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002111
Loading
/content/journal/ijsem/10.1099/ijsem.0.002111
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error