1887

Abstract

A Gram-stain-negative, aerobic, non-motile, rod-shaped and non-spore-forming bacterium, designated EF23, was isolated from rhizosphere soil of watermelon. Growth of strain EF23 was observed at 10–37 °C, at pH 5.0–9.0 and in the presence of 0–0.5 % (w/v) NaCl. Strain EF23 contained menaquinone 7 (MK-7) as the major isoprenoid quinone, and summed feature 3 (C16:1ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0, C16 : 0 and iso-C17 : 0 3-OH as the major fatty acids. Phosphatidylethanolamine was identified as the major polar lipid. The genomic DNA G+C content of strain EF23 was 43.7 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain EF23 was most closely related to Mucilaginibacter gossypii Gh-67 (98.9 % similarity) and Mucilaginibacter gossypiicola Gh-48 (97.6 %). DNA–DNA relatedness values between strain EF23 and M. gossypii KCTC 22380 and M. gossypiicola KCTC 22379 were 31.6 and 53.7 %. On the basis of the evidence presented in this polyphasic taxonomic study, strain EF23 is considered to represent a novel species of the genus Mucilaginibacter , for which the name Mucilaginibacter rubeus sp. nov. is proposed. The type strain is EF23 (=CGMCC 1.15913=KCTC 52516).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002101
2017-08-18
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/3099.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002101&mimeType=html&fmt=ahah

References

  1. Pankratov TA, Tindall BJ, Liesack W, Dedysh SN. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 2007;57:2349–2354 [CrossRef][PubMed]
    [Google Scholar]
  2. Urai M, Aizawa T, Nakagawa Y, Nakajima M, Sunairi M. Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int J Syst Evol Microbiol 2008;58:2046–2050 [CrossRef][PubMed]
    [Google Scholar]
  3. Baik KS, Park SC, Kim EM, Lim CH, Seong CN. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 2010;60:134–139 [CrossRef][PubMed]
    [Google Scholar]
  4. Chen XY, Zhao R, Tian Y, Kong BH, Li XD et al. Mucilaginibacter polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 2014;64:1395–1400 [CrossRef][PubMed]
    [Google Scholar]
  5. Kim DU, Lee H, Kim H, Kim SG, Park SY et al. Mucilaginibacter carri sp. nov., isolated from a car air conditioning system. Int J Syst Evol Microbiol 2016;66:1754–1759 [CrossRef][PubMed]
    [Google Scholar]
  6. Zheng RC, Zhao YM, Wang LQ, Chang XL, Zhang YM et al. Mucilaginibacter antarcticus sp. nov., isolated from Antarctica South Shetland Islands soil. Int J Syst Evol Microbiol 2016;66:5140–5144[CrossRef]
    [Google Scholar]
  7. Chen WM, Chen YL, Sheu SY. Mucilaginibacter roseus sp. nov., isolated from a freshwater river. Int J Syst Evol Microbiol 2016;66:1112–1118 [CrossRef][PubMed]
    [Google Scholar]
  8. Sheu SY, Chen YL, Chen WM. Mucilaginibacter fluminis sp. nov., isolated from a freshwater river. Int J Syst Evol Microbiol 2016;66:4567–4574 [CrossRef][PubMed]
    [Google Scholar]
  9. Lee JH, Kim MS, Kang JW, Baik KS, Seong CN. Mucilaginibacter puniceus sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2016;66:4549–4554 [CrossRef][PubMed]
    [Google Scholar]
  10. Jing YT, Wang P, Zhang H, Dong WL, Jing YJ et al. Mucilaginibacter yixingensis sp. nov., isolated from vegetable soil. Int J Syst Evol Microbiol 2016;66:1779–1784 [CrossRef][PubMed]
    [Google Scholar]
  11. Zhao Y, Lee HG, Kim SK, Yu H, Jin F et al. Mucilaginibacter pocheonensis sp. nov., with ginsenoside-converting activity, isolated from soil of a ginseng-cultivating field. Int J Syst Evol Microbiol 2016;66:2862–2868 [CrossRef][PubMed]
    [Google Scholar]
  12. Tang JW, Huang J, Qiao ZX, Wang R, Wang GJ et al. Mucilaginibacter pedocola sp. nov., isolated from a heavy-metal-contaminated paddy field. Int J Syst Evol Microbiol 2016;66:4033–4038 [CrossRef][PubMed]
    [Google Scholar]
  13. Aydogan EL, Busse HJ, Moser G, Müller C, Kämpfer P et al. Proposal of Mucilaginibacter phyllosphaerae sp. nov. isolated from the phyllosphere of Galium album. Int J Syst Evol Microbiol 2016;66:4138–4147 [CrossRef][PubMed]
    [Google Scholar]
  14. Baek K, Ok Jeon C, Jeon CO. Mucilaginibacter vulcanisilvae sp. nov., isolated from a volcanic forest. Int J Syst Evol Microbiol 2015;65:2036–2041 [CrossRef][PubMed]
    [Google Scholar]
  15. Joung Y, Kang H, Lee BI, Kim H, Joh K et al. Mucilaginibacter aquaedulcis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2015;65:698–703 [CrossRef][PubMed]
    [Google Scholar]
  16. Lee KC, Kim KK, Eom MK, Kim JS, Kim DS et al. Mucilaginibacter gotjawali sp. nov., isolated from soil of a lava forest. Int J Syst Evol Microbiol 2015;65:952–958 [CrossRef][PubMed]
    [Google Scholar]
  17. Joung Y, Kim H, Kang H, Lee BI, Ahn TS et al. Mucilaginibacter soyangensis sp. nov., isolated from a lake. Int J Syst Evol Microbiol 2014;64:413–419 [CrossRef][PubMed]
    [Google Scholar]
  18. Jeon Y, Lee SS, Chung BS, Kim JM, Bae JW et al. Mucilaginibacter oryzae sp. nov., isolated from soil of a rice paddy. Int J Syst Evol Microbiol 2009;59:1451–1454 [CrossRef][PubMed]
    [Google Scholar]
  19. Madhaiyan M, Poonguzhali S, Lee JS, Senthilkumar M, Lee KC et al. Mucilaginibacter gossypii sp. nov. and Mucilaginibacter gossypiicola sp. nov., plant-growth-promoting bacteria isolated from cotton rhizosphere soils. Int J Syst Evol Microbiol 2010;60:2451–2457 [CrossRef][PubMed]
    [Google Scholar]
  20. Lee HR, Han SI, Rhee KH, Whang KS. Mucilaginibacter herbaticus sp. nov., isolated from the rhizosphere of the medicinal plant Angelica sinensis. Int J Syst Evol Microbiol 2013;63:2787–2793 [CrossRef][PubMed]
    [Google Scholar]
  21. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Et AlMethods for General and Molecular Microbiology Washington, DC: ASM Press; 2007; pp.330–393
    [Google Scholar]
  22. Dong XZ, Cai MY. Determination of biochemical properties. In Dong XZ, Cai MY. (editors) Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001; pp.370–398
    [Google Scholar]
  23. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:1–67
    [Google Scholar]
  24. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  25. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  27. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  30. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  31. de Ley J, Tijtgat R. Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek 1970;36:461–474 [CrossRef][PubMed]
    [Google Scholar]
  32. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  33. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586[PubMed]
    [Google Scholar]
  34. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  35. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  36. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  37. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002101
Loading
/content/journal/ijsem/10.1099/ijsem.0.002101
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error