1887

Abstract

A Gram-stain-positive, rod-shaped and endospore-forming bacterium, strain RC11, isolated from ant nest soil collected from Udon Thani Province, Thailand was characterized in a taxonomic study based on a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain RC11 was affiliated to the genus and was closely related to LMG 22192 with 98.1 % sequence similarity. Strain RC11 contained -diaminopimelic in the cell-wall peptidoglycan. The major menaquinone was MK-7. Anteiso-C, iso-C, anteiso-C and C were the predominant cellular fatty acids. Diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol were the major polar lipids. The DNA G+C content was 57.9 mol%. In addition, strain RC11 and LMG 22192 showed a low level of DNA–DNA relatedness (15.6–33.2 %). Therefore, strain RC11 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is RC11 (=KCTC 33816=LMG 29659=TISTR 2452).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002088
2017-09-01
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3226.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002088&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 1993; 64:253–260[PubMed] [CrossRef]
    [Google Scholar]
  2. Ash C, Priest FG, Collins MD. Paenibacillus gen. nov. In Validation of the Publication of New Names and New Combination Previously Effectively Published Outside the IJSB. List no. 51. Int J Syst Bacteriol 1994; 44:852–853 [CrossRef]
    [Google Scholar]
  3. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994; 44:812–826 [View Article][PubMed]
    [Google Scholar]
  4. Claus D, Berkeley RCW. Genus Bacillus Cohn 1872. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology vol. 2 Baltimore, MD: Williams and Wilkins; 1986 pp. 1105–1140
    [Google Scholar]
  5. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article][PubMed]
    [Google Scholar]
  6. Baik KS, Choe HN, Park SC, Kim EM, Seong CN. Paenibacillus wooponensis sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2011; 61:2763–2768 [View Article][PubMed]
    [Google Scholar]
  7. Nelson DM, Glawe AJ, Labeda DP, Cann IK, Mackie RI. Paenibacillus tundrae sp. nov. and Paenibacillus xylanexedens sp. nov., psychrotolerant, xylan-degrading bacteria from Alaskan tundra. Int J Syst Evol Microbiol 2009; 59:1708–1714 [View Article][PubMed]
    [Google Scholar]
  8. Lee JC, Kim CJ, Yoon KH. Paenibacillus telluris sp. nov., a novel phosphate-solubilizing bacterium isolated from soil. J Microbiol 2011; 49:617–621 [View Article][PubMed]
    [Google Scholar]
  9. Wu X, Fang H, Qian C, Wen Y, Shen X et al. Paenibacillus tianmuensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011; 61:1133–1137 [View Article][PubMed]
    [Google Scholar]
  10. Priest FG. et al. Genus I. Paenibacillus Ash, Priest and Collins 1994, 852VP. In Vos PD, Garrity GM, Jones D, Krieg NR, Ludwig W. (editors) Bergey’s Manual of Systematic Bacteriology vol. 3 Dordrecht, London: Springer; 2009 pp. 269–295
    [Google Scholar]
  11. Hucker GJ, Conn HJ. Method of Gram staining. Tech Bull N Y St Agric Exp Stn 1923; 93:3–37
    [Google Scholar]
  12. Forbes L. Rapid flagella stain. J Clin Microbiol 1981; 13:807–809[PubMed]
    [Google Scholar]
  13. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993 [CrossRef]
    [Google Scholar]
  14. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 9:161–203
    [Google Scholar]
  15. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  16. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  17. Saito H, Miura KI. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 1963; 72:619–629 [View Article][PubMed]
    [Google Scholar]
  18. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  19. Tanasupawat S, Thawai C, Yukphan P, Moonmangmee D, Itoh T et al. Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 2004; 50:159–167 [View Article][PubMed]
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  26. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  27. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  28. Wayne LG, Brenner DJ, Colwell RR, Grimont PA, Kandler O et al. International committee on Systematic Bacteriology. Report of the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  29. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  30. Rivas R, Mateos PF, Martínez-Molina E, Velázquez E. Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 2005; 55:743–746 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.002088
Loading
/content/journal/ijsem/10.1099/ijsem.0.002088
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error