1887

Abstract

A Gram-negative, aerobic, polar-flagellated and rod-shaped, sometimes slightly curved bacterium, designated MA5, was isolated from the gut of an abalone of the species Haliotis gigantea collected in Japan. Phylogenetic analyses based on 16S rRNA, gyrB, hsp60 and rpoB gene sequences placed strain MA5 in the genus Arcobacter in an independent phylogenetic line. Comparison of the 16S rRNA gene sequence of this strain with those of the type strains of the established Arcobacter species revealed A. nitrofigilis (95.1 %) as nearest neighbour. Strain MA5 grew optimally at 25 °C, pH 6.0 to 9.0 and in the presence of 2 to 5 % (w/v) NaCl under both aerobic and microaerobic conditions. The predominant fatty acids found were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c), C12 : 0 3-OH and C18 : 1 ω7c. Menaquinone-6 (MK-6) and menaquinone-7 (MK-7) were found as the major respiratory quinones. The major polar lipids detected were phosphatidylethanolamine and phosphatidylglycerol. Strain MA5 could be differentiated phenotypically from the phylogenetic closest Arcobacter species by its ability to grow on 0.05 % safranin and 0.01 % 2,3,5-triphenyl tetrazolium chloride (TTC), but not on 0.5 % NaCl. The obtained DNA G+C content of strain MA5 was 27.9 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic distinctiveness of MA5, this strain is considered to represent a novel species of the genus Arcobacter , for which the name Arcobacter haliotis sp. nov. is proposed. The type strain is MA5 (=LMG 28652=JCM 31147).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002080
2017-08-18
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/3050.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002080&mimeType=html&fmt=ahah

References

  1. de Smet S, Vandamme P, de Zutter L, On SL, Douidah L et al. Arcobacter trophiarum sp. nov., isolated from fattening pigs. Int J Syst Evol Microbiol 2011;61:356–361 [CrossRef][PubMed]
    [Google Scholar]
  2. Figueras MJ, Collado L, Levican A, Perez J, Solsona MJ et al. Arcobacter molluscorum sp. nov., a new species isolated from shellfish. Syst Appl Microbiol 2011;34:105–109 [CrossRef][PubMed]
    [Google Scholar]
  3. Figueras MJ, Levican A, Collado L, Inza MI, Yustes C. Arcobacter ellisii sp. nov., isolated from mussels. Syst Appl Microbiol 2011;34:414–418 [CrossRef][PubMed]
    [Google Scholar]
  4. Collado L, Levican A, Perez J, Figueras MJ. Arcobacter defluvii sp. nov., isolated from sewage samples. Int J Syst Evol Microbiol 2011;61:2155–2161 [CrossRef][PubMed]
    [Google Scholar]
  5. Levican A, Collado L, Aguilar C, Yustes C, Diéguez AL et al. Arcobacter bivalviorum sp. nov. and Arcobacter venerupis sp. nov., new species isolated from shellfish. Syst Appl Microbiol 2012;35:133–138 [CrossRef][PubMed]
    [Google Scholar]
  6. Levican A, Collado L, Figueras MJ. Arcobacter cloacae sp. nov. and Arcobacter suis sp. nov., two new species isolated from food and sewage. Syst Appl Microbiol 2013;36:22–27 [CrossRef][PubMed]
    [Google Scholar]
  7. Sasi Jyothsna TS, Rahul K, Ramaprasad EV, Sasikala Ch, Ramana ChV. Arcobacter anaerophilus sp. nov., isolated from an estuarine sediment and emended description of the genus Arcobacter. Int J Syst Evol Microbiol 2013;63:4619–4625 [CrossRef][PubMed]
    [Google Scholar]
  8. Levican A, Rubio-Arcos S, Martinez-Murcia A, Collado L, Figueras MJ. Arcobacter ebronensis sp. nov. and Arcobacter aquimarinus sp. nov., two new species isolated from marine environment. Syst Appl Microbiol 2015;38:30–35 [CrossRef][PubMed]
    [Google Scholar]
  9. Whiteduck-Léveillée K, Whiteduck-Léveillée J, Cloutier M, Tambong JT, Xu R et al. Arcobacter lanthieri sp. nov., isolated from pig and dairy cattle manure. Int J Syst Evol Microbiol 2015;65:2709–2716 [CrossRef][PubMed]
    [Google Scholar]
  10. Zhang Z, Yu C, Wang X, Yu S, Zhang XH. Arcobacter pacificus sp. nov., isolated from seawater of the South Pacific Gyre. Int J Syst Evol Microbiol 2015;66:542–547 [CrossRef][PubMed]
    [Google Scholar]
  11. Whiteduck-Léveillée K, Whiteduck-Léveillée J, Cloutier M, Tambong JT, Xu R et al. Identification, characterization and description of Arcobacter faecis sp. nov., isolated from a human waste septic tank. Syst Appl Microbiol 2016;39:93–99 [CrossRef][PubMed]
    [Google Scholar]
  12. Park S, Jung YT, Kim S, Yoon JH. Arcobacter acticola sp. nov., isolated from seawater on the East Sea in South Korea. J Microbiol 2016;54:655–659 [CrossRef][PubMed]
    [Google Scholar]
  13. Houf K, On SL, Coenye T, Mast J, Van Hoof J et al. Arcobacter cibarius sp. nov., isolated from broiler carcasses. Int J Syst Evol Microbiol 2005;55:713–717 [CrossRef][PubMed]
    [Google Scholar]
  14. Fera MT, Gugliandolo C, Lentini V, Favaloro A, Bonanno D et al. Specific detection of Arcobacter spp. in estuarine waters of Southern Italy by PCR and fluorescent in situ hybridization. Lett Appl Microbiol 2010;50:65–70 [CrossRef][PubMed]
    [Google Scholar]
  15. Hausdorf L, Neumann M, Bergmann I, Sobiella K, Mundt K et al. Occurrence and genetic diversity of Arcobacter spp. in a spinach-processing plant and evaluation of two Arcobacter-specific quantitative PCR assays. Syst Appl Microbiol 2013;36:235–243 [CrossRef][PubMed]
    [Google Scholar]
  16. Fisher JC, Levican A, Figueras MJ, McLellan SL. Population dynamics and ecology of Arcobacter in sewage. Front Microbiol 2014;5:525 [CrossRef][PubMed]
    [Google Scholar]
  17. Collado L, Cleenwerck I, van Trappen S, de Vos P, Figueras MJ. Arcobacter mytili sp. nov., an indoxyl acetate-hydrolysis-negative bacterium isolated from mussels. Int J Syst Evol Microbiol 2009;59:1391–1396 [CrossRef][PubMed]
    [Google Scholar]
  18. Kim HM, Hwang CY, Cho BC. Arcobacter marinus sp. nov. Int J Syst Evol Microbiol 2010;60:531–536 [CrossRef][PubMed]
    [Google Scholar]
  19. Tanaka R, Sugimura I, Sawabe T, Yoshimizu M, Ezura Y. Gut microflora of abalone Haliotis discus hannai in culture changes coincident with a change in diet. Fisheries Science 2003;69:951–958 [CrossRef]
    [Google Scholar]
  20. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J. Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 2002;52:1551–1558 [CrossRef][PubMed]
    [Google Scholar]
  21. Wilson K. Preparation of genomic DNA from bacteria. In Ausubei FM, Brent R, Kingston RE, Moore DD, Seidman JG et al. (editors) Current Protocols in Molecular Biology NY: Greene Publishing and Wiley-Interscience; 1987; pp.2.4.1–2.4.2
    [Google Scholar]
  22. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  23. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  24. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  25. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–155
    [Google Scholar]
  26. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  27. Vandamme P, Dewhirst FE, Paster BJ, On SLW. Family I. Campylobacteraceae. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 NY: Springer; 2005; pp.1145–1146
    [Google Scholar]
  28. Donachie SP, Bowman JP, On SL, Alam M. Arcobacter halophilus sp. nov., the first obligate halophile in the genus Arcobacter. Int J Syst Evol Microbiol 2005;55:1271–1277 [CrossRef][PubMed]
    [Google Scholar]
  29. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  30. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  32. Ursing JB, Lior H, Owen RJ. Proposal of minimal standards for describing new species of the family Campylobacteraceae. Int J Syst Bacteriol 1994;44:842–845 [CrossRef][PubMed]
    [Google Scholar]
  33. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  34. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:61–67
    [Google Scholar]
  35. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG. (editors) The Prokaryotes NY: Springer; 1981; pp.1302–1331
    [Google Scholar]
  36. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963;85:1183–1184[PubMed]
    [Google Scholar]
  37. Salas-Massó N, Andree KB, Furones MD, Figueras MJ. Enhanced recovery of Arcobacter spp. using NaCl in culture media and re-assessment of the traits of Arcobacter marinus and Arcobacter halophilus isolated from marine water and shellfish. Sci Total Environ 2016;566-567:1355–1361 [CrossRef][PubMed]
    [Google Scholar]
  38. Pati A, Gronow S, Lapidus A, Copeland A, del Rio TG et al. Complete genome sequence of Arcobacter nitrofigilis type strain (CIT). Stand Genomic Sci 2011;30:300–308
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002080
Loading
/content/journal/ijsem/10.1099/ijsem.0.002080
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error