1887

Abstract

A yellow-pigmented, Gram-stain-negative, short-rod-shaped bacterial strain, MIMD3, was isolated from biological soil crusts collected in Liangcheng, north-western China. Cell growth could be observed at 10–37 °C (optimum 25 °C), at pH 5–8 (optimum 6.6) and in the presence of 1 % (w/v) NaCl (optimum 0 %). The genomic DNA G+C content was 65.0 mol%. Analysis of 16S rRNA gene sequences showed that strain MIMD3 shared the highest similarity with KCTC 42454 (95.1 %), JCM 12082 (94.8 %), IFO 15500 (94.5 %), ATCC 15260 (94.4 %) and CC-Nfb-2 (94.3 %). The strain had Q-10 as the predominant respiratory quinone, and -homospermidine as the major polyamine. The major fatty acids of the strain were summed feature 8 (Cω7 and/or Cω6), C cyclo 8, C 2-OH and C. The main polar lipids of strain MIMD3 were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and sphingoglycolipid. Based on phenotypic, chemotaxonomic and phylogenetic characteristics, it is concluded that strain MIMD3 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MIMD3 (=KCTC 42801=MCCC 1K01310).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002074
2017-08-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/3033.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002074&mimeType=html&fmt=ahah

References

  1. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 2000; 50:1563–1589 [View Article][PubMed]
    [Google Scholar]
  2. Lee KB, Liu CT, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005; 55:1907–1919 [View Article][PubMed]
    [Google Scholar]
  3. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34:99–119 [View Article][PubMed]
    [Google Scholar]
  4. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article][PubMed]
    [Google Scholar]
  5. Maruyama T, Park HD, Ozawa K, Tanaka Y, Sumino T et al. Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 2006; 56:85–89 [View Article][PubMed]
    [Google Scholar]
  6. Du H, Jiao N, Hu Y, Zeng Y. Diversity and distribution of pigmented heterotrophic bacteria in marine environments. FEMS Microbiol Ecol 2006; 57:92–105 [View Article][PubMed]
    [Google Scholar]
  7. Chun J, Lee JH, Jung Y, Kim M, Kim S et al. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 2007; 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  8. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  9. Kimura M, Takahata N. Selective constraint in protein polymorphism: study of the effectively neutral mutation model by using an improved pseudosampling method. Proc Natl Acad Sci USA 1983; 80:1048–1052 [View Article][PubMed]
    [Google Scholar]
  10. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  11. Lányi B. Classical and rapid identification methods for medically important Bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  12. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  13. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1:138–146 [CrossRef]
    [Google Scholar]
  14. Han L, Wu SJ, Qin CY, Zhu YH, Lu ZQ et al. Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains, China and emended description of the genus Hymenobacter. Antonie van Leeuwenhoek 2014; 105:971–978 [View Article][PubMed]
    [Google Scholar]
  15. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 330–393
    [Google Scholar]
  16. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  17. Busse HJ, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47:698–708 [View Article]
    [Google Scholar]
  18. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  19. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  20. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  21. Wittich RM, Busse HJ, Kämpfer P, Macedo AJ, Tiirola M et al. Sphingomonas fennica sp. nov. and Sphingomonas haloaromaticamans sp. nov., outliers of the genus Sphingomonas. Int J Syst Evol Microbiol 2007; 57:1740–1746 [View Article][PubMed]
    [Google Scholar]
  22. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  23. Yabuuchi E, Yamamoto H, Terakubo S, Okamura N, Naka T et al. Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo-p-dioxin metabolizer. Int J Syst Evol Microbiol 2001; 51:281–292 [View Article][PubMed]
    [Google Scholar]
  24. Lee KC, Kim KK, Kim JS, Kim DS, Ko SH et al. Sphingomonas vulcanisoli sp. nov., isolated from soil of a lava forest. Int J Syst Evol Microbiol 2015; 65:3320–3325 [View Article][PubMed]
    [Google Scholar]
  25. Lin SY, Shen FT, Lai WA, Zhu ZL, Chen WM et al. Sphingomonas formosensis sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 2012; 62:1581–1586 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002074
Loading
/content/journal/ijsem/10.1099/ijsem.0.002074
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error