1887

Abstract

A novel bacterium with strong arsenic (As) methylation and volatilization abilities, designated strain SM-1, was isolated from an As-contaminated paddy soil. SM-1 is strictly aerobic, rod-shaped, non-motile, Gram-negative and orange-coloured. Phylogenetic analysis revealed that strain SM-1 showed low 16S rRNA gene sequence similarities (≤88 %) to members of established genera in the family . Growth of this strain was observed at 15–45 °C (optimum, 37 °C), pH 6.0–8.0 (optimum, 7.0) and 0–0.5 % (w/v) NaCl. The major cellular fatty acids were Cω5 and iso-C. The respiratory quinone was MK-7, and the predominant polar lipids were phosphatidylethanolamine, an unidentified lipid (L), and an unidentified aminolipid (AL2). The DNA G+C content was 51.5 mol%. On the basis of phenotypic, phylogenetic and chemotaxonomic properties, strain SM-1 represents a novel species in a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is SM-1 (=CCTCC AB 2017086=KCTC 52624).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002068
2017-09-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3186.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002068&mimeType=html&fmt=ahah

References

  1. Stanier RY. Studies on the Cytophagas. J Bacteriol 1940;40:619–635[PubMed]
    [Google Scholar]
  2. Filippini M, Svercel M, Laczko E, Kaech A, Ziegler U et al. Fibrella aestuarina gen. nov., sp. nov., a filamentous bacterium of the family Cytophagaceae isolated from a tidal flat, and emended description of the genus Rudanella Weon et al. 2008. Int J Syst Evol Microbiol 2011;61:184–189 [CrossRef][PubMed]
    [Google Scholar]
  3. Nikitin DI, Strömpl C, Oranskaya MS, Abraham WR. Phylogeny of the ring-forming bacterium Arcicella aquatica gen. nov., sp. nov. (ex Nikitin et al. 1994), from a freshwater neuston biofilm. Int J Syst Evol Microbiol 2004;54:681–684 [CrossRef][PubMed]
    [Google Scholar]
  4. Vancanneyt M, Nedashkovskaya OI, Snauwaert C, Mortier S, Vandemeulebroecke K et al. Larkinella insperata gen. nov., sp. nov., a bacterium of the phylum 'bacteroidetes' isolated from water of a steam generator. Int J Syst Evol Microbiol 2006;56:237–241 [CrossRef][PubMed]
    [Google Scholar]
  5. Jiang F, Xiao M, Chen L, Kan W, Peng F et al. Huanghella arctica gen. nov., sp. nov., a bacterium of the family Cytophagaceae isolated from arctic tundra soil. Int J Syst Evol Microbiol 2013;63:696–702 [CrossRef][PubMed]
    [Google Scholar]
  6. Anandham R, Weon HY, Kim SJ, Kim YS, Kwon SW. Rhodocytophaga aerolata gen. nov., sp. nov., a new member of the family Cytophagaceae isolated from air. Int J Syst Evol Microbiol 2010;60:1554–1558 [CrossRef][PubMed]
    [Google Scholar]
  7. Sheu SY, Chen YS, Shiau YW, Chen WM. Fluviimonas pallidilutea gen. nov., sp. nov., a new member of the family Cytophagaceae isolated from a freshwater river. Int J Syst Evol Microbiol 2013;63:3861–3867 [CrossRef][PubMed]
    [Google Scholar]
  8. Joung Y, Kim H, Kang H, Lee BI, Ahn TS et al. Lacihabitans soyangensis gen. nov., sp. nov., a new member of the family Cytophagaceae, isolated from a freshwater reservoir. Int J Syst Evol Microbiol 2014;64:3188–3194 [CrossRef][PubMed]
    [Google Scholar]
  9. Panaullah GM, Alam T, Hossain MB, Loeppert RH, Lauren JG et al. Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil 2009;317:31–39 [CrossRef]
    [Google Scholar]
  10. Meharg AA, Rahman MM. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 2003;37:229–234 [CrossRef][PubMed]
    [Google Scholar]
  11. Azizur Rahman M, Hasegawa H, Mahfuzur Rahman M, Mazid Miah MA, Tasmin A. Arsenic accumulation in rice (Oryza sativa L.): human exposure through food chain. Ecotoxicol Environ Saf 2008;69:317–324 [CrossRef][PubMed]
    [Google Scholar]
  12. Zhu YG, Sun GX, Lei M, Teng M, Liu YX et al. High percentage inorganic arsenic content of mining impacted and nonimpacted chinese rice. Environ Sci Technol 2008;42:5008–5013 [CrossRef][PubMed]
    [Google Scholar]
  13. Lomax C, Liu WJ, Wu L, Xue K, Xiong J et al. Methylated arsenic species in plants originate from soil microorganisms. New Phytol 2012;193:665–672 [CrossRef][PubMed]
    [Google Scholar]
  14. Mestrot A, Planer-Friedrich B, Feldmann J. Biovolatilisation: a poorly studied pathway of the arsenic biogeochemical cycle. Environ Sci Proc Impacts 2013;15:1639–1651 [CrossRef][PubMed]
    [Google Scholar]
  15. Qin J, Rosen BP, Zhang Y, Wang G, Franke S et al. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Nat Acad Sci USA 2006;103:2075–2080 [CrossRef][PubMed]
    [Google Scholar]
  16. Huang K, Chen C, Zhang J, Tang Z, Shen Q et al. Efficient arsenic methylation and volatilization mediated by a novel bacterium from an arsenic-contaminated paddy Soil. Environ Sci Technol 2016;50:6389–6396 [CrossRef][PubMed]
    [Google Scholar]
  17. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 1998;19:554–568 [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  22. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S. Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 2001;51:1639–1652 [CrossRef][PubMed]
    [Google Scholar]
  23. Buck JD, Nonstaining BJD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982;44:992–993[PubMed]
    [Google Scholar]
  24. Kang JY, Chun J, Choi A, Cho JC, Jahng KY. Nibrella saemangeumensis gen. nov., sp. nov. and Nibrella viscosa sp. nov., novel members of the family Cytophagaceae, isolated from seawater. Int J Syst Evol Microbiol 2013;63:4508–4514 [CrossRef][PubMed]
    [Google Scholar]
  25. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  26. Yang SH, Seo HS, Woo JH, Oh HM, Jang H et al. Carboxylicivirga gen. nov. in the family Marinilabiliaceae with two novel species, Carboxylicivirga mesophila sp. nov. and Carboxylicivirga taeanensis sp. nov., and reclassification of Cytophaga fermentans as Saccharicrinis fermentans gen. nov., comb. nov. Int J Syst Evol Microbiol 2014;64:1351–1358 [CrossRef][PubMed]
    [Google Scholar]
  27. Weon HY, Noh HJ, Son JA, Jang HB, Kim BY et al. Rudanella lutea gen. nov., sp. nov., isolated from an air sample in Korea. Int J Syst Evol Microbiol 2008;58:474–478 [CrossRef][PubMed]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101. Newark, DE: MIDI, Inc; 1990
    [Google Scholar]
  29. Smith GL, Socransky SS, Smith CM. Rapid method for the purification of DNA from subgingival microorganisms. Oral Microbiol Immunol 1989;4:47–51 [CrossRef][PubMed]
    [Google Scholar]
  30. Filippini M, Kaech A, Ziegler U, Bagheri HC. Fibrisoma limi gen. nov., sp. nov., a filamentous bacterium isolated from tidal flats. Int J Syst Evol Microbiol 2011;61:1418–1424 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002068
Loading
/content/journal/ijsem/10.1099/ijsem.0.002068
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error