1887

Abstract

Strain LA220, isolated from seawater of the Eastern Pacific Ocean, was subjected to a polyphasic taxonomic study. Cells of the strain were Gram-stain-negative, aerobic, motile and short rod-shaped. On the basis of 16S rRNA gene sequence analysis, strain LA220 showed high similarity to Henriciella litoralis SD10 (98.5 %), Henriciella marina DSM 19595 (98.3 %) and Henriciella aquimarin a P38 (97.5 %), and exhibited less than 97.0 % 16S rRNA gene sequence similarity with respect to the type strains of other Hyphomonadaceae species. Phylogenetic analyses revealed that strain LA220 fell within the cluster of the genus Henriciella. The average nucleotide identity and in silico DNA–DNA hybridization values between strain LA220 and the type strains of Henriciella species were 74.8–76.8 and 18.4–20.8 %, respectively. The sole respiratory quinone was ubiquinone-10 (Q-10). The principal fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. The major polar lipids were three unidentified glycolipids. The DNA G+C content was 59.9 mol%. Phylogenetic distinctiveness, chemotaxonomic differences and phenotypic properties revealed that strain LA220 could be differentiated from recognized Henriciella species. Therefore, strain LA220 is considered to represent a novel species of the genus Henriciella , for which the name Henriciella pelagia sp. nov. (type strain LA220=CGMCC 1.15928=KCTC 52577) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002066
2017-08-18
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/3020.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002066&mimeType=html&fmt=ahah

References

  1. Quan ZX, Zeng DN, Xiao YP, Roh SW, Nam YD et al. Henriciella marina gen. nov., sp. nov., a novel member of the family Hyphomonadaceae isolated from the East Sea. J Microbiol 2009;47:156–161 [CrossRef][PubMed]
    [Google Scholar]
  2. Lee SH, Shim JK, Kim JM, Choi HK, Jeon CO. Henriciella litoralis sp. nov., isolated from a tidal flat, transfer of Maribaculum marinum Lai et al. 2009 to the genus Henriciella as Henriciella aquimarina nom. nov. and emended description of the genus Henriciella. Int J Syst Evol Microbiol 2011;61:722–727 [CrossRef][PubMed]
    [Google Scholar]
  3. Lai Q, Yuan J, Shao Z. Maribaculum marinum gen. nov., sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2009;59:3083–3087 [CrossRef][PubMed]
    [Google Scholar]
  4. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  5. Farmer III JJ, Janda JM, Brenner FW, Cameron DN, Birkhead KM et al. Genus I. Vibrio Pacini 1854, 411AL. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 The Proteobacteria, Part B, The Gammaproteobacteria New York: Springer; 2005; pp.494–546
    [Google Scholar]
  6. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963;85:1183–1184[PubMed]
    [Google Scholar]
  7. Wu YH, Xu L, Meng FX, Zhang DS, Wang CS et al. Altererythrobacter atlanticus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014;64:116–121 [CrossRef][PubMed]
    [Google Scholar]
  8. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
    [Google Scholar]
  9. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007; pp.330–393
    [Google Scholar]
  10. Xu XW, Wu YH, Zhou Z, Wang CS, Zhou YG et al. Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 2007;57:1619–1624 [CrossRef][PubMed]
    [Google Scholar]
  11. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012;1:1–6 [CrossRef][PubMed]
    [Google Scholar]
  12. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–1055 [CrossRef][PubMed]
    [Google Scholar]
  13. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  15. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  16. Lee I, Kim YO, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2015;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  17. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  18. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  19. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  21. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  26. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  27. Wayne LG, Brenner DJ, Colwell RR, Grimont AD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002066
Loading
/content/journal/ijsem/10.1099/ijsem.0.002066
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error