1887

Abstract

A light yellow-coloured, Gram-stain-negative, non-motile and rod-shaped bacterium, designated strain K-3-6, capable of degrading aliphatic hydrocarbons was isolated from oil-contaminated soil of Biratnagar, Morang, Nepal. It was able to grow at 15–45 °C, at pH 5.0–9.5 and with 0–6 % (w/v) NaCl. Based on 16S rRNA gene sequence analysis, strain K-3-6 belongs to the genus and is closely related to IMMIB HF-1 (98.4 % similarity), NBRC 16140 (98.3 %), CC-FH12-1 (97.9 %), DS20 (97.9 %), NBRC 102518 (97.2 %), SC_3 (97.2 %) and Chen16-4 (97.0 %). The predominant respiratory quinone was ubiquinone-10 and the major polyamine was spermidine. The polar lipid profile revealed the presence of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, phosphatidyldimethylethanolamine, sphingoglycolipid and phosphatidylmonomethylethanolamine. The predominant fatty acids of strain K-3-6 were summed feature 8 (Cω7 and/or Cω6), summed feature 3 (Cω7 and/or Cω6), C, C and C 2-OH. The genomic DNA G+C content was 65.6 mol%. Levels of DNA–DNA relatedness between strain K-3-6 and IMMIB HF-1, NBRC 16140, DS20, CC-FH12-1, NBRC 102518 and Chen16-4 were 34.0, 33.3, 28.7, 26.3, 29.0 and 22.3 %, respectively. The morphological, physiological, chemotaxonomic and phylogenetic analyses clearly distinguished this strain from its closest phylogenetic neighbours. Thus, strain K-3-6 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is K-3-6 (=KEMB 9005-449=KACC 19001=JCM 31713).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002064
2017-08-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2986.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002064&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990;34:99–119 [CrossRef][PubMed]
    [Google Scholar]
  2. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001;51:1405–1417 [CrossRef][PubMed]
    [Google Scholar]
  3. Maruyama T, Park HD, Ozawa K, Tanaka Y, Sumino T et al. Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 2006;56:85–89 [CrossRef][PubMed]
    [Google Scholar]
  4. Young CC, Ho MJ, Arun AB, Chen WM, Lai WA et al. Sphingobium olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2007;57:2613–2617 [CrossRef][PubMed]
    [Google Scholar]
  5. Kumari H, Gupta SK, Jindal S, Katoch P, Lal R. Sphingobium lactosutens sp. nov., isolated from a hexachlorocyclohexane dump site and Sphingobium abikonense sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2009;59:2291–2296 [CrossRef][PubMed]
    [Google Scholar]
  6. Young CC, Arun AB, Kämpfer P, Busse HJ, Lai WA et al. Sphingobium rhizovicinum sp. nov., isolated from rhizosphere soil of Fortunella hindsii (Champ. ex Benth.) Swingle. Int J Syst Evol Microbiol 2008;58:1801–1806 [CrossRef][PubMed]
    [Google Scholar]
  7. Ushiba Y, Takahara Y, Ohta H. Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol 2003;53:2045–2048 [CrossRef][PubMed]
    [Google Scholar]
  8. Maeda AH, Kunihiro M, Ozeki Y, Nogi Y, Kanaly RA. Sphingobium barthaii sp. nov., a high molecular weight polycyclic aromatic hydrocarbon-degrading bacterium isolated from cattle pasture soil. Int J Syst Evol Microbiol 2015;65:2919–2924 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ et al. Sphingobium limneticum sp. nov. and Sphingobium boeckii sp. nov., two freshwater planktonic members of the family Sphingomonadaceae, and reclassification of Sphingomonas suberifaciens as Sphingobium suberifaciens comb. nov. Int J Syst Evol Microbiol 2013;63:735–743 [CrossRef][PubMed]
    [Google Scholar]
  10. Li L, Liu H, Shi Z, Wang G. Sphingobium cupriresistens sp. nov., a copper-resistant bacterium isolated from copper mine soil, and emended description of the genus Sphingobium. Int J Syst Evol Microbiol 2013;63:604–609 [CrossRef][PubMed]
    [Google Scholar]
  11. Zhu L, Xin K, Chen C, Li C, Si M et al. Sphingobium endophyticus sp. nov., isolated from the root of Hylomecon japonica. Antonie van Leeuwenhoek 2015;107:1001–1008 [CrossRef][PubMed]
    [Google Scholar]
  12. Prakash O, Lal R. Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. Int J Syst Evol Microbiol 2006;56:2147–2152 [CrossRef][PubMed]
    [Google Scholar]
  13. Zhang J, Lang ZF, Zheng JW, Hang BJ, Duan XQ et al. Sphingobium jiangsuense sp. nov., a 3-phenoxybenzoic acid-degrading bacterium isolated from a wastewater treatment system. Int J Syst Evol Microbiol 2012;62:800–805 [CrossRef][PubMed]
    [Google Scholar]
  14. Vaz-Moreira I, Faria C, Lopes AR, Svensson L, Falsen E et al. Sphingobium vermicomposti sp. nov., isolated from vermicompost. Int J Syst Evol Microbiol 2009;59:3145–3149 [CrossRef][PubMed]
    [Google Scholar]
  15. Chaudhary DK, Kim J. Novosphingobium naphthae sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 2016;66:3170–3176 [CrossRef][PubMed]
    [Google Scholar]
  16. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–IN1 [CrossRef]
    [Google Scholar]
  17. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008;74:2461–2470 [CrossRef][PubMed]
    [Google Scholar]
  18. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  19. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  20. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  27. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  28. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  29. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P. (editor) Manual of Methods for General Bacteriology Washington, DC, USA: American Society for Microbiology; 1981; pp.21–33
    [Google Scholar]
  30. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995;61:3756–3758[PubMed]
    [Google Scholar]
  31. Chaudhary DK, Kim J. Arvibacter flaviflagrans gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016;66:4347–4354 [CrossRef][PubMed]
    [Google Scholar]
  32. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.309–329
    [Google Scholar]
  33. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al. Novosphingobium arabidopsis sp. nov., a DDT-resistant bacterium isolated from the rhizosphere of Arabidopsis thaliana. Int J Syst Evol Microbiol 2014;64:594–598 [CrossRef][PubMed]
    [Google Scholar]
  34. Hemraj V, Diksha S, Avneet G. A review on commonly used biochemical test for Bacteria. Innovare J Life Sci 2013;1:1–7
    [Google Scholar]
  35. Chaudhary DK, Kim J. Sphingomonas naphthae sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2016;66:4621–4627 [CrossRef][PubMed]
    [Google Scholar]
  36. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: ASM Press; 2007; pp.330–393
    [Google Scholar]
  37. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC, USA: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  38. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  39. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  40. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316–354[PubMed]
    [Google Scholar]
  41. Komagata K, Suzuki K. Lipids and cell wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–203[CrossRef]
    [Google Scholar]
  42. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  43. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]
    [Google Scholar]
  44. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
    [Google Scholar]
  45. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007;57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  46. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  47. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  48. Pham VH, Kim J, Jeong SW. Enhanced isolation and culture of highly efficient psychrophilic oil-degrading Bacteria from oil-contaminated soils in South Korea. J Environ Biol 2014;35:1145–1149[PubMed]
    [Google Scholar]
  49. Vermeulen J. Ripening of PAH and TPH polluted sediments: determination and quantification of bioremediation parameters. PhD thesis Wageningen University, Wageningen, The Netherlands; 2007
    [Google Scholar]
  50. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  51. Sheu SY, Shiau YW, Wei YT, Chen WM. Sphingobium fontiphilum sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2013;63:1906–1911 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002064
Loading
/content/journal/ijsem/10.1099/ijsem.0.002064
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error