sp. nov., isolated from Atacama Desert rock Free

Abstract

Eleven actinobacterial strains were isolated from a rock sample collected in the Atacama Desert. Molecular typing by BOX-PCR divided the strains into three clusters and showed that, although very similar, they were not clones. Three strains, ATK01, ATK03 and ATK17, each representing one of the defined BOX clusters, were chosen for further characterization. Phylogenetic analysis indicated that the strains were related to the genus and were recovered in a cluster together with YIM 63101 and AS 4.1538. Chemotaxonomic analyses confirmed their affiliation to the genus but differences were found between the new strains and their closest phylogenetic relatives. Physiological and fatty acid analyses also revealed differences between these strains and their phylogenetic neighbours supporting their status as a distinct species. Based on the overall data, it is proposed that strains ATK01, ATK03 and ATK17 represent a novel species of the genus for which the name sp. nov. is proposed (type strain ATK03=DSM 104088=CECT 9183).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002063
2017-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2980.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002063&mimeType=html&fmt=ahah

References

  1. Bull AT, Asenjo JA, Goodfellow M, Gómez-Silva B. The Atacama desert: technical resources and the growing importance of novel microbial diversity. Annu Rev Microbiol 2016; 70:215–234 [View Article][PubMed]
    [Google Scholar]
  2. Busarakam K, Bull AT, Girard G, Labeda DP, van Wezel GP et al. Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees. Antonie van Leeuwenhoek 2014; 105:849–861 [View Article][PubMed]
    [Google Scholar]
  3. Busarakam K, Bull AT, Trujillo ME, Riesco R, Sangal V et al. Modestobacter caceresii sp. nov., novel actinobacteria with an insight into their adaptive mechanisms for survival in extreme hyper-arid Atacama Desert soils. Syst Appl Microbiol 2016; 39:243–251 [View Article][PubMed]
    [Google Scholar]
  4. Okoro CK, Bull AT, Mutreja A, Rong X, Huang Y et al. Lechevalieria atacamensis sp. nov., Lechevalieria deserti sp. nov. and Lechevalieria roselyniae sp. nov., isolated from hyperarid soils. Int J Syst Evol Microbiol 2010; 60:296–300 [View Article][PubMed]
    [Google Scholar]
  5. Santhanam R, Okoro CK, Rong X, Huang Y, Bull AT et al. Streptomyces atacamensis sp. nov., isolated from an extreme hyper-arid soil of the Atacama desert, Chile. Int J Syst Evol Microbiol 2012; 62:2680–2684 [View Article][PubMed]
    [Google Scholar]
  6. Henssen A. Beiträge zur morphologie und systematik der thermophilen actinomyceten. Arch Microbiol 1957; 26:373–414
    [Google Scholar]
  7. Sahin N, Veyisoglu A, Tatar D, Spröer C, Cetin D et al. Pseudonocardia cypriaca sp. nov., Pseudonocardia salamisensis sp. nov., Pseudonocardia hierapolitana sp. nov. and Pseudonocardia kujensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64:1703–1711 [View Article][PubMed]
    [Google Scholar]
  8. Chen HH, Qin S, Li J, Zhang YQ, Xu LH et al. Pseudonocardia endophytica sp. nov., isolated from the pharmaceutical plant Lobelia clavata. Int J Syst Evol Microbiol 2009; 59:559–563 [View Article][PubMed]
    [Google Scholar]
  9. Gu Q, Luo H, Zheng W, Liu Z, Huang Y. Pseudonocardia oroxyli sp. nov., a novel actinomycete isolated from surface-sterilized Oroxylum indicum root. Int J Syst Evol Microbiol 2006; 56:2193–2197 [View Article][PubMed]
    [Google Scholar]
  10. Sakiyama Y, Thao NK, Vinh HV, Giang NM, Miyadoh S et al. Pseudonocardia babensis sp. nov., isolated from plant litter. Int J Syst Evol Microbiol 2010; 60:2336–2340 [View Article][PubMed]
    [Google Scholar]
  11. Busarakam K. Novel actinobacterial diversity in arid Atacama Desert soils as a source of new drug leads. PhD Thesis University of Newcastle Upon Tyne; 2014
    [Google Scholar]
  12. Lynch RC, King AJ, Farías ME, Sowell P, Vitry C et al. The potential for microbial life in the highest-elevation (>6000 m.a.s.l.) mineral soils of the Atacama region. J Geophys Res Biogeosciences 2012; 117:1–10
    [Google Scholar]
  13. Huang Y, Goodfellow M. Pseudonocardia. In: Bergey's Manual of Systematics of Archaea and Bacteria 2015 pp. 1–32
    [Google Scholar]
  14. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  15. Pascual J, González I, Estévez M, Benito P, Trujillo ME et al. Description of Kibdelosporangium banguiense sp. nov., a novel actinomycete isolated from soil of the forest of Pama, on the plateau of Bangui, Central African Republic. Antonie van Leeuwenhoek 2016; 109:685–695 [View Article][PubMed]
    [Google Scholar]
  16. Trujillo ME, Alonso-Vega P, Rodríguez R, Carro L, Cerda E et al. The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J 2010; 4:1265–1281 [View Article][PubMed]
    [Google Scholar]
  17. Garcia LC, Martínez-Molina E, Trujillo ME. Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 2010; 60:331–337 [View Article][PubMed]
    [Google Scholar]
  18. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  19. Thompson J, Gibson T, Plewniak F, Jeanmonguin F, Higgins D. The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 1997; 24:4876–4882 [CrossRef]
    [Google Scholar]
  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  23. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  25. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  26. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231[PubMed]
    [Google Scholar]
  27. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark: Microbial ID; 1990
    [Google Scholar]
  29. Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N et al. opm: an R package for analysing OmniLogR phenotype microarray data. Bioinformatics 2013; 29:1823–1824 [View Article][PubMed]
    [Google Scholar]
  30. Vaas LA, Sikorski J, Michael V, Göker M, Klenk HP. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 2012; 7:e34846 [View Article][PubMed]
    [Google Scholar]
  31. Carro L, Riesco R, Spröer C, Trujillo ME. Micromonospora luteifusca sp. nov. isolated from cultivated Pisum sativum. Syst Appl Microbiol 2016; 39:237–242 [View Article][PubMed]
    [Google Scholar]
  32. Zhao GZ, Li J, Zhu WY, Li XP, Tian SZ et al. Pseudonocardia bannaensis sp. nov., a novel actinomycete isolated from the surface-sterilized roots of Artemisia annua L. Antonie van Leeuwenhoek 2011; 100:35–42 [View Article][PubMed]
    [Google Scholar]
  33. Xu LH, Jin X, Mao PH, Lu ZF, Cui XL et al. Three new species of the genus Actinobispora of the family Pseudonocardiaceae, Actinobispora alaniniphila sp. nov., Actinobispora aurantiaca sp. nov. and Actinobispora xinjiangensis sp. nov. Int J Syst Bacteriol 1999; 49:881–886 [View Article][PubMed]
    [Google Scholar]
  34. Huang Y, Wang L, Lu Z, Hong L, Liu Z et al. Proposal to combine the genera Actinobispora and Pseudonocardia in an emended genus Pseudonocardia, and description of Pseudonocardia zijingensis sp. nov. Int J Syst Evol Microbiol 2002; 52:977–982 [View Article][PubMed]
    [Google Scholar]
  35. Park SW, Park ST, Lee JE, Kim YM. Pseudonocardia carboxydivorans sp. nov., a carbon monoxide-oxidizing actinomycete, and an emended description of the genus Pseudonocardia. Int J Syst Evol Microbiol 2008; 58:2475–2478 [View Article][PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002063
Loading
/content/journal/ijsem/10.1099/ijsem.0.002063
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed