1887

Abstract

A Gram-stain-negative, aerobic, non-motile and coccoid, ovoid or rod-shaped bacterial strain, designated JSSK-14, was isolated from the place where the ocean and a freshwater spring meet at Jeju island, South Korea. Strain JSSK-14 grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 1.0–2.0 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain JSSK-14 fell within the clade comprising the type strains of species of the genus Erythrobacter . Strain JSSK-14 exhibited 16S rRNA gene sequence similarity values of 97.09–98.42 % to the type strains of Erythrobacter gangjinensis , Erythrobacter atlanticus and Erythrobacter luteus and of 94.31–96.97 % to the type strains of the other species of the genus Erythrobacter . Strain JSSK-14 contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The major polar lipids of strain JSSK-14 were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and sphingoglycolipid. The DNA G+C content of strain JSSK-14 was 63.5 mol%, and its mean DNA–DNA relatedness values with the type strains of Erythrobacter gangjinensis , Erythrobacter atlanticus and Erythrobacter luteus were 13–25 %. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain JSSK-14 is separated from recognized species of the genus Erythrobacter . On the basis of the data presented, strain JSSK-14 is considered to represent a novel species of the genus Erythrobacter , for which the name Erythrobacter aquimixticola sp. nov. is proposed. The type strain is JSSK-14 (=KCTC 52764=NBRC 112765).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002055
2017-08-18
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2964.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002055&mimeType=html&fmt=ahah

References

  1. Shiba T, Simidu U. Gen Elongus nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 1982;32:211–217 [CrossRef]
    [Google Scholar]
  2. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  3. Lee KB, Liu CT, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005;55:1907–1919 [CrossRef][PubMed]
    [Google Scholar]
  4. Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P et al. Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 1994;44:427–434 [CrossRef][PubMed]
    [Google Scholar]
  5. Denner EB, Vybiral D, Koblízek M, Kämpfer P, Busse HJ et al. Erythrobacter citreus sp. nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean sea. Int J Syst Evol Microbiol 2002;52:1655–1661 [CrossRef][PubMed]
    [Google Scholar]
  6. Yoon JH, Kim H, Kim IG, Kang KH, Park YH. Erythrobacter flavus sp. nov., a slight halophile from the East sea in Korea. Int J Syst Evol Microbiol 2003;53:1169–1174 [CrossRef][PubMed]
    [Google Scholar]
  7. Yoon JH, Kang KH, Oh TK, Park YH. Erythrobacter aquimaris sp. nov., isolated from sea water of a tidal flat of the yellow sea in Korea. Int J Syst Evol Microbiol 2004;54:1981–1985 [CrossRef][PubMed]
    [Google Scholar]
  8. Yoon JH, Oh TK, Park YH. Erythrobacter seohaensis sp. nov. and Erythrobacter gaetbuli sp. nov., isolated from a tidal flat of the yellow sea in Korea. Int J Syst Evol Microbiol 2005;55:71–75 [CrossRef][PubMed]
    [Google Scholar]
  9. Ivanova EP, Bowman JP, Lysenko AM, Zhukova NV, Gorshkova NM et al. Erythrobacter vulgaris sp. nov., a novel organism isolated from the marine invertebrates. Syst Appl Microbiol 2005;28:123–130 [CrossRef][PubMed]
    [Google Scholar]
  10. Xu M, Xin Y, Yu Y, Zhang J, Zhou Y et al. Erythrobacter nanhaisediminis sp. nov., isolated from marine sediment of the South China Sea. Int J Syst Evol Microbiol 2010;60:2215–2220 [CrossRef][PubMed]
    [Google Scholar]
  11. Lei X, Zhang H, Chen Y, Li Y, Chen Z et al. Erythrobacter luteus sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2015;65:2472–2478 [CrossRef][PubMed]
    [Google Scholar]
  12. Zhuang L, Liu Y, Wang L, Wang W, Shao Z. Erythrobacter atlanticus sp. nov., a bacterium from ocean sediment able to degrade polycyclic aromatic hydrocarbons. Int J Syst Evol Microbiol 2015;65:3714–3719 [CrossRef][PubMed]
    [Google Scholar]
  13. Yoon J-H, Kim H, Kim S-B, Kim H-J, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996;46:502–505 [CrossRef]
    [Google Scholar]
  14. Yoon J-H, Lee ST, Kim S-B, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997;47:111–114 [CrossRef]
    [Google Scholar]
  15. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014;64:2969–2974 [CrossRef][PubMed]
    [Google Scholar]
  16. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Mocrobiol 1987;19:1–67
    [Google Scholar]
  17. Barrow GI, Cowan FRKA. Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993;[CrossRef]
    [Google Scholar]
  18. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from german North Sea intertidal sediment. Int J Syst Evol Microbiol 2001;51:1997–2006 [CrossRef][PubMed]
    [Google Scholar]
  19. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG et al. (editors) The Prokaryotes Berlin: Springer; 1981; pp.1302–1331
    [Google Scholar]
  20. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957;49:25–68 [CrossRef][PubMed]
    [Google Scholar]
  21. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968;95:1921–1942[PubMed]
    [Google Scholar]
  22. Rainey FA, Silva J, Nobre MF, Silva MT, da Costa MS. Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a-containing species. Int J Syst Evol Microbiol 2003;53:35–41 [CrossRef][PubMed]
    [Google Scholar]
  23. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
    [Google Scholar]
  24. Lee YS, Lee DH, Kahng HY, Kim EM, Jung JS. Erythrobacter gangjinensis sp. nov., a marine bacterium isolated from seawater. Int J Syst Evol Microbiol 2010;60:1413–1417 [CrossRef][PubMed]
    [Google Scholar]
  25. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc 1990
    [Google Scholar]
  26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  27. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994; pp.121–161
    [Google Scholar]
  28. Jung YT, Park S, Oh TK, Yoon JH. Erythrobacter marinus sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012;62:2050–2055 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  30. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  31. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad Hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  32. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002055
Loading
/content/journal/ijsem/10.1099/ijsem.0.002055
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error